Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.

Detalhes bibliográficos
Autor(a) principal: MACHADO, G. O.
Data de Publicação: 2022
Outros Autores: TEIXEIRA, G. G., GARCIA, R. H. S., MORAES, T. B., BONA, E., SANTOS, P. M., COLNAGO, L. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148849
https://doi.org/10.3390/molecules27144434
Resumo: Low Field Time-Domain Nuclear Magnetic Resonance (TD-NMR) relaxometry was used to determine moisture, fat, and defatted dry matter contents in ?requeijão cremoso? (RC) processed cheese directly in commercial packaged (plastic cups or tubes with approximately 200 g). Forty-five samples of commercial RC types (traditional, light, lactose-free, vegan, and fiber) were analyzed using longitudinal (T1) and transverse (T2) relaxation measurements in a wide bore Halbach magnet(0.23 T) with a 100 mm probe. The T1 and T2 analyses were performed using CWFP-T1(Continuous Wave Free Precession) and CPMG (Carr-Purcell-Meiboom-Gill) single shot pulses. The scores of the principal component analysis (PCA) of CWFP-T1 and CPMG signals did not show clustering related to the RC types. Optimization by variable selection was carried out with ordered predictorsselection (OPS), providing simpler and predictive partial least squares (PLS) calibration models. The best results were obtained with CWFP-T1 data, with root-mean-square errors of prediction (RMSEP) of 1.38, 4.71, 3.28, and 3.00% for defatted dry mass, fat in the dry and wet matter, and moisture, respectively. Therefore, CWFP-T1 data modeled with chemometrics can be a fast method to monitor the quality of RC directly in commercial packages
id EMBR_699f6396dc713e7a1ccfbbfb7b22a9c2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1148849
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.TD-NMRRequeijão cremosoCPMGPLSOPSLow Field Time-Domain Nuclear Magnetic Resonance (TD-NMR) relaxometry was used to determine moisture, fat, and defatted dry matter contents in ?requeijão cremoso? (RC) processed cheese directly in commercial packaged (plastic cups or tubes with approximately 200 g). Forty-five samples of commercial RC types (traditional, light, lactose-free, vegan, and fiber) were analyzed using longitudinal (T1) and transverse (T2) relaxation measurements in a wide bore Halbach magnet(0.23 T) with a 100 mm probe. The T1 and T2 analyses were performed using CWFP-T1(Continuous Wave Free Precession) and CPMG (Carr-Purcell-Meiboom-Gill) single shot pulses. The scores of the principal component analysis (PCA) of CWFP-T1 and CPMG signals did not show clustering related to the RC types. Optimization by variable selection was carried out with ordered predictorsselection (OPS), providing simpler and predictive partial least squares (PLS) calibration models. The best results were obtained with CWFP-T1 data, with root-mean-square errors of prediction (RMSEP) of 1.38, 4.71, 3.28, and 3.00% for defatted dry mass, fat in the dry and wet matter, and moisture, respectively. Therefore, CWFP-T1 data modeled with chemometrics can be a fast method to monitor the quality of RC directly in commercial packagesLUIZ ALBERTO COLNAGO, CNPDIA.MACHADO, G. O.TEIXEIRA, G. G.GARCIA, R. H. S.MORAES, T. B.BONA, E.SANTOS, P. M.COLNAGO, L. A.2024-01-23T10:42:13Z2024-01-23T10:42:13Z2022-11-282022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10 p.Molecules, v. 27, a4434, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148849https://doi.org/10.3390/molecules27144434enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-01-23T10:42:13Zoai:www.alice.cnptia.embrapa.br:doc/1148849Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542024-01-23T10:42:13falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-01-23T10:42:13Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
title Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
spellingShingle Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
MACHADO, G. O.
TD-NMR
Requeijão cremoso
CPMG
PLS
OPS
title_short Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
title_full Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
title_fullStr Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
title_full_unstemmed Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
title_sort Non-invasive method to predict the composition of requeijão cremoso directly in commercial packages using time domain NMR relaxometry and chemometrics.
author MACHADO, G. O.
author_facet MACHADO, G. O.
TEIXEIRA, G. G.
GARCIA, R. H. S.
MORAES, T. B.
BONA, E.
SANTOS, P. M.
COLNAGO, L. A.
author_role author
author2 TEIXEIRA, G. G.
GARCIA, R. H. S.
MORAES, T. B.
BONA, E.
SANTOS, P. M.
COLNAGO, L. A.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv LUIZ ALBERTO COLNAGO, CNPDIA.
dc.contributor.author.fl_str_mv MACHADO, G. O.
TEIXEIRA, G. G.
GARCIA, R. H. S.
MORAES, T. B.
BONA, E.
SANTOS, P. M.
COLNAGO, L. A.
dc.subject.por.fl_str_mv TD-NMR
Requeijão cremoso
CPMG
PLS
OPS
topic TD-NMR
Requeijão cremoso
CPMG
PLS
OPS
description Low Field Time-Domain Nuclear Magnetic Resonance (TD-NMR) relaxometry was used to determine moisture, fat, and defatted dry matter contents in ?requeijão cremoso? (RC) processed cheese directly in commercial packaged (plastic cups or tubes with approximately 200 g). Forty-five samples of commercial RC types (traditional, light, lactose-free, vegan, and fiber) were analyzed using longitudinal (T1) and transverse (T2) relaxation measurements in a wide bore Halbach magnet(0.23 T) with a 100 mm probe. The T1 and T2 analyses were performed using CWFP-T1(Continuous Wave Free Precession) and CPMG (Carr-Purcell-Meiboom-Gill) single shot pulses. The scores of the principal component analysis (PCA) of CWFP-T1 and CPMG signals did not show clustering related to the RC types. Optimization by variable selection was carried out with ordered predictorsselection (OPS), providing simpler and predictive partial least squares (PLS) calibration models. The best results were obtained with CWFP-T1 data, with root-mean-square errors of prediction (RMSEP) of 1.38, 4.71, 3.28, and 3.00% for defatted dry mass, fat in the dry and wet matter, and moisture, respectively. Therefore, CWFP-T1 data modeled with chemometrics can be a fast method to monitor the quality of RC directly in commercial packages
publishDate 2022
dc.date.none.fl_str_mv 2022-11-28
2022
2024-01-23T10:42:13Z
2024-01-23T10:42:13Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Molecules, v. 27, a4434, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148849
https://doi.org/10.3390/molecules27144434
identifier_str_mv Molecules, v. 27, a4434, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148849
https://doi.org/10.3390/molecules27144434
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503556135387136