SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1152495 https://doi.org/10.3390/rs15041130 |
Resumo: | In this work, we explored the potential of three machine and deep learning algorithms (random forest, long short-term memory, and transformer) to perform early-season (with three-time windows) mapping of ICLS fields. To explore the scalability of the proposed methods, we tested them in two regions with different latitudes, cloud cover rates, field sizes, landscapes, and crop types. Finally, the potential of SAR (Sentinel-1) and optical (Sentinel-2) data was tested. |
id |
EMBR_c6671eebc6941f7351c30cd6c3925aaa |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1152495 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms.Floresta aleatóriaAgricultura regenerativaSistemas integrados lavoura-pecuáriaAprendizado de máquinaAprendizado profundoRegenerative agricultureRandom forestIntegrated Crop-livestock systemsICLSLong short-term memoryLSTMMultisourceTransformerAgriculturaAgricultureIn this work, we explored the potential of three machine and deep learning algorithms (random forest, long short-term memory, and transformer) to perform early-season (with three-time windows) mapping of ICLS fields. To explore the scalability of the proposed methods, we tested them in two regions with different latitudes, cloud cover rates, field sizes, landscapes, and crop types. Finally, the potential of SAR (Sentinel-1) and optical (Sentinel-2) data was tested.ANA P. S. G. D. D. TORO, UNIVERSIDADE ESTADUAL DE CAMPINAS; INACIO T. BUENO, UNIVERSIDADE ESTADUAL DE CAMPINAS; JOÃO PAULO SAMPAIO WERNER, UNIVERSIDADE ESTADUAL DE CAMPINAS; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; RUBENS AUGUSTO DE CAMARGO LAMPARELLI, UNIVERSIDADE ESTADUAL DE CAMPINAS; ALEXANDRE CAMARGO COUTINHO, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; PAULO S. G. MAGALHÃES, UNIVERSIDADE ESTADUAL DE CAMPINAS; GLEYCE KELLY DANTAS ARAÚJO FIGUEIREDO, UNIVERSIDADE ESTADUAL DE CAMPINAS.TORO, A. P. S. G. D. D.BUENO, I. T.WERNER, J. P. S.ANTUNES, J. F. G.LAMPARELLI, R. A. C.COUTINHO, A. C.ESQUERDO, J. C. D. M.MAGALHÃES, P. S. G.FIGUEIREDO, G. K. D. A.2023-03-20T11:50:46Z2023-03-20T11:50:46Z2023-03-202023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 15, n. 4, 1130, Feb. 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1152495https://doi.org/10.3390/rs15041130enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-03-20T11:50:46Zoai:www.alice.cnptia.embrapa.br:doc/1152495Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-03-20T11:50:46Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
title |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
spellingShingle |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. TORO, A. P. S. G. D. D. Floresta aleatória Agricultura regenerativa Sistemas integrados lavoura-pecuária Aprendizado de máquina Aprendizado profundo Regenerative agriculture Random forest Integrated Crop-livestock systems ICLS Long short-term memory LSTM Multisource Transformer Agricultura Agriculture |
title_short |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
title_full |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
title_fullStr |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
title_full_unstemmed |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
title_sort |
SAR and optical data applied to early-season mapping of integrated crop-livestock systems using deep and machine learning algorithms. |
author |
TORO, A. P. S. G. D. D. |
author_facet |
TORO, A. P. S. G. D. D. BUENO, I. T. WERNER, J. P. S. ANTUNES, J. F. G. LAMPARELLI, R. A. C. COUTINHO, A. C. ESQUERDO, J. C. D. M. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
author_role |
author |
author2 |
BUENO, I. T. WERNER, J. P. S. ANTUNES, J. F. G. LAMPARELLI, R. A. C. COUTINHO, A. C. ESQUERDO, J. C. D. M. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
ANA P. S. G. D. D. TORO, UNIVERSIDADE ESTADUAL DE CAMPINAS; INACIO T. BUENO, UNIVERSIDADE ESTADUAL DE CAMPINAS; JOÃO PAULO SAMPAIO WERNER, UNIVERSIDADE ESTADUAL DE CAMPINAS; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; RUBENS AUGUSTO DE CAMARGO LAMPARELLI, UNIVERSIDADE ESTADUAL DE CAMPINAS; ALEXANDRE CAMARGO COUTINHO, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; PAULO S. G. MAGALHÃES, UNIVERSIDADE ESTADUAL DE CAMPINAS; GLEYCE KELLY DANTAS ARAÚJO FIGUEIREDO, UNIVERSIDADE ESTADUAL DE CAMPINAS. |
dc.contributor.author.fl_str_mv |
TORO, A. P. S. G. D. D. BUENO, I. T. WERNER, J. P. S. ANTUNES, J. F. G. LAMPARELLI, R. A. C. COUTINHO, A. C. ESQUERDO, J. C. D. M. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
dc.subject.por.fl_str_mv |
Floresta aleatória Agricultura regenerativa Sistemas integrados lavoura-pecuária Aprendizado de máquina Aprendizado profundo Regenerative agriculture Random forest Integrated Crop-livestock systems ICLS Long short-term memory LSTM Multisource Transformer Agricultura Agriculture |
topic |
Floresta aleatória Agricultura regenerativa Sistemas integrados lavoura-pecuária Aprendizado de máquina Aprendizado profundo Regenerative agriculture Random forest Integrated Crop-livestock systems ICLS Long short-term memory LSTM Multisource Transformer Agricultura Agriculture |
description |
In this work, we explored the potential of three machine and deep learning algorithms (random forest, long short-term memory, and transformer) to perform early-season (with three-time windows) mapping of ICLS fields. To explore the scalability of the proposed methods, we tested them in two regions with different latitudes, cloud cover rates, field sizes, landscapes, and crop types. Finally, the potential of SAR (Sentinel-1) and optical (Sentinel-2) data was tested. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-20T11:50:46Z 2023-03-20T11:50:46Z 2023-03-20 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Remote Sensing, v. 15, n. 4, 1130, Feb. 2023. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1152495 https://doi.org/10.3390/rs15041130 |
identifier_str_mv |
Remote Sensing, v. 15, n. 4, 1130, Feb. 2023. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1152495 https://doi.org/10.3390/rs15041130 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1822720695464886272 |