Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714 https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022 |
Resumo: | ABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover. |
id |
EMBR_f4863d30f9ad1882ecddbb0752ae7078 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1145714 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.Agricultura regenerativaIdentificação de culturasFloresta aleatóriaAprendizado profundoLSTMRegenerative agricultureCrop identificationRandom forestSensoriamento RemotoRemote sensingABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover.Edition of proceedings of the 2022 edition of the XXIVth ISPRS Congress, Nice, France.FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; FEAGRI/UNICAMP.TORO, A. P. S. G. D.WERNER, J. P. S.REIS, A. A. dosESQUERDO, J. C. D. M.ANTUNES, J. F. G.COUTINHO, A. C.LAMPARELLI, R. A. C.MAGALHÃES, P. S. G.FIGUEIREDO, G. K. D. A.2022-08-24T19:26:01Z2022-08-24T19:26:01Z2022-08-242022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-08-24T19:26:09Zoai:www.alice.cnptia.embrapa.br:doc/1145714Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-08-24T19:26:09falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-08-24T19:26:09Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
title |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
spellingShingle |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. TORO, A. P. S. G. D. Agricultura regenerativa Identificação de culturas Floresta aleatória Aprendizado profundo LSTM Regenerative agriculture Crop identification Random forest Sensoriamento Remoto Remote sensing |
title_short |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
title_full |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
title_fullStr |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
title_full_unstemmed |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
title_sort |
Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data. |
author |
TORO, A. P. S. G. D. |
author_facet |
TORO, A. P. S. G. D. WERNER, J. P. S. REIS, A. A. dos ESQUERDO, J. C. D. M. ANTUNES, J. F. G. COUTINHO, A. C. LAMPARELLI, R. A. C. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
author_role |
author |
author2 |
WERNER, J. P. S. REIS, A. A. dos ESQUERDO, J. C. D. M. ANTUNES, J. F. G. COUTINHO, A. C. LAMPARELLI, R. A. C. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; FEAGRI/UNICAMP. |
dc.contributor.author.fl_str_mv |
TORO, A. P. S. G. D. WERNER, J. P. S. REIS, A. A. dos ESQUERDO, J. C. D. M. ANTUNES, J. F. G. COUTINHO, A. C. LAMPARELLI, R. A. C. MAGALHÃES, P. S. G. FIGUEIREDO, G. K. D. A. |
dc.subject.por.fl_str_mv |
Agricultura regenerativa Identificação de culturas Floresta aleatória Aprendizado profundo LSTM Regenerative agriculture Crop identification Random forest Sensoriamento Remoto Remote sensing |
topic |
Agricultura regenerativa Identificação de culturas Floresta aleatória Aprendizado profundo LSTM Regenerative agriculture Crop identification Random forest Sensoriamento Remoto Remote sensing |
description |
ABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-24T19:26:01Z 2022-08-24T19:26:01Z 2022-08-24 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714 https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022 |
identifier_str_mv |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714 https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503529962930176 |