Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.

Detalhes bibliográficos
Autor(a) principal: TORO, A. P. S. G. D.
Data de Publicação: 2022
Outros Autores: WERNER, J. P. S., REIS, A. A. dos, ESQUERDO, J. C. D. M., ANTUNES, J. F. G., COUTINHO, A. C., LAMPARELLI, R. A. C., MAGALHÃES, P. S. G., FIGUEIREDO, G. K. D. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022
Resumo: ABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover.
id EMBR_f4863d30f9ad1882ecddbb0752ae7078
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1145714
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.Agricultura regenerativaIdentificação de culturasFloresta aleatóriaAprendizado profundoLSTMRegenerative agricultureCrop identificationRandom forestSensoriamento RemotoRemote sensingABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover.Edition of proceedings of the 2022 edition of the XXIVth ISPRS Congress, Nice, France.FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; FEAGRI/UNICAMP.TORO, A. P. S. G. D.WERNER, J. P. S.REIS, A. A. dosESQUERDO, J. C. D. M.ANTUNES, J. F. G.COUTINHO, A. C.LAMPARELLI, R. A. C.MAGALHÃES, P. S. G.FIGUEIREDO, G. K. D. A.2022-08-24T19:26:01Z2022-08-24T19:26:01Z2022-08-242022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-08-24T19:26:09Zoai:www.alice.cnptia.embrapa.br:doc/1145714Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-08-24T19:26:09falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-08-24T19:26:09Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
title Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
spellingShingle Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
TORO, A. P. S. G. D.
Agricultura regenerativa
Identificação de culturas
Floresta aleatória
Aprendizado profundo
LSTM
Regenerative agriculture
Crop identification
Random forest
Sensoriamento Remoto
Remote sensing
title_short Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
title_full Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
title_fullStr Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
title_full_unstemmed Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
title_sort Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
author TORO, A. P. S. G. D.
author_facet TORO, A. P. S. G. D.
WERNER, J. P. S.
REIS, A. A. dos
ESQUERDO, J. C. D. M.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
FIGUEIREDO, G. K. D. A.
author_role author
author2 WERNER, J. P. S.
REIS, A. A. dos
ESQUERDO, J. C. D. M.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
FIGUEIREDO, G. K. D. A.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; FEAGRI/UNICAMP.
dc.contributor.author.fl_str_mv TORO, A. P. S. G. D.
WERNER, J. P. S.
REIS, A. A. dos
ESQUERDO, J. C. D. M.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
FIGUEIREDO, G. K. D. A.
dc.subject.por.fl_str_mv Agricultura regenerativa
Identificação de culturas
Floresta aleatória
Aprendizado profundo
LSTM
Regenerative agriculture
Crop identification
Random forest
Sensoriamento Remoto
Remote sensing
topic Agricultura regenerativa
Identificação de culturas
Floresta aleatória
Aprendizado profundo
LSTM
Regenerative agriculture
Crop identification
Random forest
Sensoriamento Remoto
Remote sensing
description ABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-24T19:26:01Z
2022-08-24T19:26:01Z
2022-08-24
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022
identifier_str_mv The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503529962930176