Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.

Detalhes bibliográficos
Autor(a) principal: ANDRADE, T. G.
Data de Publicação: 2021
Outros Autores: ANDRADE JUNIOR, A. S. de, SOUZA, M. O., LOPES, J. W. B., VIEIRA, P. F. de M. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138334
Resumo: Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures.
id EMBR_e30b4677b50ea1f681de6088b91bbe56
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1138334
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.NDVIRegressão múltiplaPrevisão de SafraRegression analysisAgricultural forecastsRecent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures.THATIANE GOMES ANDRADE, UFPI, Bom Jesus, PI.; ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; MELISSA ODA SOUZA, UESPI, Teresina, PI.; JOSE WELLINGTON BATISTA LOPES, UFPI, Bom Jesus, PI.; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN.ANDRADE, T. G.ANDRADE JUNIOR, A. S. deSOUZA, M. O.LOPES, J. W. B.VIEIRA, P. F. de M. J.2021-12-23T15:01:28Z2021-12-23T15:01:28Z2021-12-232022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRevista Caatinga, v. 35, n. 1, p. 105-116, jan./mar. 2022.0100-316X (impresso); 1983-2125 (online)http://www.alice.cnptia.embrapa.br/alice/handle/doc/113833410.1590/1983-21252022v35n111rcenginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-12-23T15:01:36Zoai:www.alice.cnptia.embrapa.br:doc/1138334Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-12-23T15:01:36Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
title Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
spellingShingle Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
ANDRADE, T. G.
NDVI
Regressão múltipla
Previsão de Safra
Regression analysis
Agricultural forecasts
title_short Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
title_full Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
title_fullStr Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
title_full_unstemmed Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
title_sort Soybean yield prediction using remote sensing in Southwestern Piauí State, Brazil.
author ANDRADE, T. G.
author_facet ANDRADE, T. G.
ANDRADE JUNIOR, A. S. de
SOUZA, M. O.
LOPES, J. W. B.
VIEIRA, P. F. de M. J.
author_role author
author2 ANDRADE JUNIOR, A. S. de
SOUZA, M. O.
LOPES, J. W. B.
VIEIRA, P. F. de M. J.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv THATIANE GOMES ANDRADE, UFPI, Bom Jesus, PI.; ADERSON SOARES DE ANDRADE JUNIOR, CPAMN; MELISSA ODA SOUZA, UESPI, Teresina, PI.; JOSE WELLINGTON BATISTA LOPES, UFPI, Bom Jesus, PI.; PAULO FERNANDO DE MELO JORGE VIEIRA, CPAMN.
dc.contributor.author.fl_str_mv ANDRADE, T. G.
ANDRADE JUNIOR, A. S. de
SOUZA, M. O.
LOPES, J. W. B.
VIEIRA, P. F. de M. J.
dc.subject.por.fl_str_mv NDVI
Regressão múltipla
Previsão de Safra
Regression analysis
Agricultural forecasts
topic NDVI
Regressão múltipla
Previsão de Safra
Regression analysis
Agricultural forecasts
description Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-23T15:01:28Z
2021-12-23T15:01:28Z
2021-12-23
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Revista Caatinga, v. 35, n. 1, p. 105-116, jan./mar. 2022.
0100-316X (impresso); 1983-2125 (online)
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138334
10.1590/1983-21252022v35n111rc
identifier_str_mv Revista Caatinga, v. 35, n. 1, p. 105-116, jan./mar. 2022.
0100-316X (impresso); 1983-2125 (online)
10.1590/1983-21252022v35n111rc
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1138334
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695625964158976