SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Caatinga |
Texto Completo: | https://periodicos.ufersa.edu.br/caatinga/article/view/10255 |
Resumo: | Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures. |
id |
UFERSA-1_5bc0ab544a013deaa7da6f7d49befbae |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/10255 |
network_acronym_str |
UFERSA-1 |
network_name_str |
Revista Caatinga |
repository_id_str |
|
spelling |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZILESTIMATIVA DA PRODUTIVIDADE DA SOJA POR SENSORIAMENTO REMOTO NA REGIÃO SUDOESTE DO PIAUÍPrevisão de safra. Regressão múltipla.Crop season forecast. Multiple regression.Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures. Pesquisas recentes apontam resultados promissores da integração de dados orbitais utilizando o índice de vegetação NDVI, para monitorar e estimar a produtividade da soja. O objetivo do trabalho foi avaliar a proposição de modelos de regressão linear múltipla para estimativa da produtividade de grãos com uso do índice NDVI. A pesquisa foi realizada na Fazenda Celeiro, município de Monte Alegre do Piauí, PI, sendo a área de estudo de 200 ha. Foram utilizadas cinco imagens durante o ciclo de cultivo da soja, sendo uma do Landsat 8 e quatro do Sentinel 2. Efetuou-se análises de regressão entre dados de produtividade de grãos (variável predita), extraídos dos mapas de colheita, e dados espectrais de (variáveis preditoras) oriundos dos índices de vegetação (NDVI) de diferentes estádios de desenvolvimento da soja. A seleção dos modelos promissores foi efetuada pelo critério de informação de Akaike (AIC). Para validação dos modelos utilizou-se a raiz quadrada do erro quadrado médio (RMSE) e a raiz quadrada do erro quadrado médio normalizado (nRMSE) pela média da produtividade da soja no talhão. O modelo de regressão linear gerado com o índice de vegetação NDVI nos estádios de desenvolvimento V5-V6 e R2, mostrou-se promissor na predição da produtividade de grãos de soja, com erro médio de estimativa da ordem de 153,9 kg ha-1, o que representa 4,2% em relação aos dados medidos em campo. Universidade Federal Rural do Semi-Árido2021-12-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1025510.1590/1983-21252022v35n111rcREVISTA CAATINGA; Vol. 35 No. 1 (2022); 105-116Revista Caatinga; v. 35 n. 1 (2022); 105-1161983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/10255/10822Copyright (c) 2021 Revista Caatingainfo:eu-repo/semantics/openAccessAndrade, Thatiane GomesAndrade Junior, Aderson Soares deSouza, Melissa OdaLopes, Jose Wellington BatistaVieira, Paulo Fernando de Melo Jorge2023-07-03T18:25:21Zoai:ojs.periodicos.ufersa.edu.br:article/10255Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:55.798514Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true |
dc.title.none.fl_str_mv |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL ESTIMATIVA DA PRODUTIVIDADE DA SOJA POR SENSORIAMENTO REMOTO NA REGIÃO SUDOESTE DO PIAUÍ |
title |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL |
spellingShingle |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL Andrade, Thatiane Gomes Previsão de safra. Regressão múltipla. Crop season forecast. Multiple regression. |
title_short |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL |
title_full |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL |
title_fullStr |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL |
title_full_unstemmed |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL |
title_sort |
SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL |
author |
Andrade, Thatiane Gomes |
author_facet |
Andrade, Thatiane Gomes Andrade Junior, Aderson Soares de Souza, Melissa Oda Lopes, Jose Wellington Batista Vieira, Paulo Fernando de Melo Jorge |
author_role |
author |
author2 |
Andrade Junior, Aderson Soares de Souza, Melissa Oda Lopes, Jose Wellington Batista Vieira, Paulo Fernando de Melo Jorge |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Thatiane Gomes Andrade Junior, Aderson Soares de Souza, Melissa Oda Lopes, Jose Wellington Batista Vieira, Paulo Fernando de Melo Jorge |
dc.subject.por.fl_str_mv |
Previsão de safra. Regressão múltipla. Crop season forecast. Multiple regression. |
topic |
Previsão de safra. Regressão múltipla. Crop season forecast. Multiple regression. |
description |
Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/10255 10.1590/1983-21252022v35n111rc |
url |
https://periodicos.ufersa.edu.br/caatinga/article/view/10255 |
identifier_str_mv |
10.1590/1983-21252022v35n111rc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/10255/10822 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Revista Caatinga info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Revista Caatinga |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 35 No. 1 (2022); 105-116 Revista Caatinga; v. 35 n. 1 (2022); 105-116 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
instacron_str |
UFERSA |
institution |
UFERSA |
reponame_str |
Revista Caatinga |
collection |
Revista Caatinga |
repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
_version_ |
1797674029441613824 |