SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL

Detalhes bibliográficos
Autor(a) principal: Andrade, Thatiane Gomes
Data de Publicação: 2021
Outros Autores: Andrade Junior, Aderson Soares de, Souza, Melissa Oda, Lopes, Jose Wellington Batista, Vieira, Paulo Fernando de Melo Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/10255
Resumo: Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures.  
id UFERSA-1_5bc0ab544a013deaa7da6f7d49befbae
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/10255
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZILESTIMATIVA DA PRODUTIVIDADE DA SOJA POR SENSORIAMENTO REMOTO NA REGIÃO SUDOESTE DO PIAUÍPrevisão de safra. Regressão múltipla.Crop season forecast. Multiple regression.Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures.  Pesquisas recentes apontam resultados promissores da integração de dados orbitais utilizando o índice de vegetação NDVI, para monitorar e estimar a produtividade da soja. O objetivo do trabalho foi avaliar a proposição de modelos de regressão linear múltipla para estimativa da produtividade de grãos com uso do índice NDVI. A pesquisa foi realizada na Fazenda Celeiro, município de Monte Alegre do Piauí, PI, sendo a área de estudo de 200 ha. Foram utilizadas cinco imagens durante o ciclo de cultivo da soja, sendo uma do Landsat 8 e quatro do Sentinel 2. Efetuou-se análises de regressão entre dados de produtividade de grãos (variável predita), extraídos dos mapas de colheita, e dados espectrais de (variáveis preditoras) oriundos dos índices de vegetação (NDVI) de diferentes estádios de desenvolvimento da soja. A seleção dos modelos promissores foi efetuada pelo critério de informação de Akaike (AIC). Para validação dos modelos utilizou-se a raiz quadrada do erro quadrado médio (RMSE) e a raiz quadrada do erro quadrado médio normalizado (nRMSE) pela média da produtividade da soja no talhão. O modelo de regressão linear gerado com o índice de vegetação NDVI nos estádios de desenvolvimento V5-V6 e R2, mostrou-se promissor na predição da produtividade de grãos de soja, com erro médio de estimativa da ordem de 153,9 kg ha-1, o que representa 4,2% em relação aos dados medidos em campo.  Universidade Federal Rural do Semi-Árido2021-12-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1025510.1590/1983-21252022v35n111rcREVISTA CAATINGA; Vol. 35 No. 1 (2022); 105-116Revista Caatinga; v. 35 n. 1 (2022); 105-1161983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/10255/10822Copyright (c) 2021 Revista Caatingainfo:eu-repo/semantics/openAccessAndrade, Thatiane GomesAndrade Junior, Aderson Soares deSouza, Melissa OdaLopes, Jose Wellington BatistaVieira, Paulo Fernando de Melo Jorge2023-07-03T18:25:21Zoai:ojs.periodicos.ufersa.edu.br:article/10255Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:55.798514Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
ESTIMATIVA DA PRODUTIVIDADE DA SOJA POR SENSORIAMENTO REMOTO NA REGIÃO SUDOESTE DO PIAUÍ
title SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
spellingShingle SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
Andrade, Thatiane Gomes
Previsão de safra. Regressão múltipla.
Crop season forecast. Multiple regression.
title_short SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
title_full SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
title_fullStr SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
title_full_unstemmed SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
title_sort SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL
author Andrade, Thatiane Gomes
author_facet Andrade, Thatiane Gomes
Andrade Junior, Aderson Soares de
Souza, Melissa Oda
Lopes, Jose Wellington Batista
Vieira, Paulo Fernando de Melo Jorge
author_role author
author2 Andrade Junior, Aderson Soares de
Souza, Melissa Oda
Lopes, Jose Wellington Batista
Vieira, Paulo Fernando de Melo Jorge
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Thatiane Gomes
Andrade Junior, Aderson Soares de
Souza, Melissa Oda
Lopes, Jose Wellington Batista
Vieira, Paulo Fernando de Melo Jorge
dc.subject.por.fl_str_mv Previsão de safra. Regressão múltipla.
Crop season forecast. Multiple regression.
topic Previsão de safra. Regressão múltipla.
Crop season forecast. Multiple regression.
description Recent researches have shown promising results for the use of orbital data using the Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures.  
publishDate 2021
dc.date.none.fl_str_mv 2021-12-22
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/10255
10.1590/1983-21252022v35n111rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/10255
identifier_str_mv 10.1590/1983-21252022v35n111rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/10255/10822
dc.rights.driver.fl_str_mv Copyright (c) 2021 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 35 No. 1 (2022); 105-116
Revista Caatinga; v. 35 n. 1 (2022); 105-116
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1797674029441613824