Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/29970 |
Resumo: | Este trabalho apresentou a aplicação de uma nova técnica de estimação da variância realizada (RV) a partir de redes neurais artificiais (RNA) e comparou seu desempenho com os modelos de regressão linear múltipla (RLM) e de volatilidade implícita (IV) como preditor, a qual é obtida a partir do Volatility Index, VIX. O desempenho dos modelos é medido pelo R2 ajustado. A nova técnica proposta possui duas abordagens, a primeira utiliza a RV como vetor resposta da RNA enquanto a segunda utiliza o prêmio de risco de variância (VRP), o qual é composto pela combinação do VR e do VIX. As informações de mercado utilizadas neste trabalho são compreendidas entre 06 de Janeiro de 2016 e 01 de Maio de 2020 e foram coletadas a partir de um terminal Bloomberg. O ativo escolhido para o estudo é o índice MSCI Brazil, EWZ, negociado na bolsa de valores americanas NYSE. Os modelos são testados em quatro cenários distintos e observa-se que os desempenhos superiores ocorrem quando não há períodos de crise. Evidenciamos que o modelo de RNA com o VRP como vetor resposta apresenta o melhor desempenho entre os modelos estudados, e que este mesmo modelo, além do cenário sem crise, apresenta um desempenho superior quando há um período de crise em ambos os dados de treinamento e teste quando comparados com os cenários onde se tem uma crise apenas em um ou apenas em outro. Como o modelo de RNA com a RV como vetor resposta apresenta um desempenho consideravelmente inferior ao seu par, é válido ressaltar a importância do VIX em aumentar a acurácia deste modelo de RNA que utiliza o VRP como vetor resposta ao exercer um papel de normalizador. |
id |
FGV_076c3a9b861ef6a70a29fa54b0b7a870 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/29970 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Miranda, Gabriel SoaresEscolas::EESPMatsumoto, Élia YathieCipparrone, Flavio Almeida de MagalhãesPinto, Afonso de Campos2021-01-05T14:30:14Z2021-01-05T14:30:14Z2020-11-24https://hdl.handle.net/10438/29970Este trabalho apresentou a aplicação de uma nova técnica de estimação da variância realizada (RV) a partir de redes neurais artificiais (RNA) e comparou seu desempenho com os modelos de regressão linear múltipla (RLM) e de volatilidade implícita (IV) como preditor, a qual é obtida a partir do Volatility Index, VIX. O desempenho dos modelos é medido pelo R2 ajustado. A nova técnica proposta possui duas abordagens, a primeira utiliza a RV como vetor resposta da RNA enquanto a segunda utiliza o prêmio de risco de variância (VRP), o qual é composto pela combinação do VR e do VIX. As informações de mercado utilizadas neste trabalho são compreendidas entre 06 de Janeiro de 2016 e 01 de Maio de 2020 e foram coletadas a partir de um terminal Bloomberg. O ativo escolhido para o estudo é o índice MSCI Brazil, EWZ, negociado na bolsa de valores americanas NYSE. Os modelos são testados em quatro cenários distintos e observa-se que os desempenhos superiores ocorrem quando não há períodos de crise. Evidenciamos que o modelo de RNA com o VRP como vetor resposta apresenta o melhor desempenho entre os modelos estudados, e que este mesmo modelo, além do cenário sem crise, apresenta um desempenho superior quando há um período de crise em ambos os dados de treinamento e teste quando comparados com os cenários onde se tem uma crise apenas em um ou apenas em outro. Como o modelo de RNA com a RV como vetor resposta apresenta um desempenho consideravelmente inferior ao seu par, é válido ressaltar a importância do VIX em aumentar a acurácia deste modelo de RNA que utiliza o VRP como vetor resposta ao exercer um papel de normalizador.The present dissertation is focused on applying a new technique for estimating realized variance (RV) using Artificial Neural Network (ANN) and comparing its performance against other benchmark models as Multiple Linear Regression (MLR) and Implied Volatility (IV) like a predictor, which is obtained from the Volatility Index (VIX). All models performance is measured by adjusted R2 . The new proposed technique has two approaches, the first one uses the RV as the desirable information while the second one uses the Variance Risk Premium (VRP), which is the result of RV and VIX combination. The market information used in this work comprehends between January 6th 2016 and May 1st 2020, and it has been collected through a bloomberg terminal. The underlying asset chosen was the MSCI Brazil index, EWZ, which is traded on NYSE. All models have been tested in four different scenarios and higher performances are found in periods without crisis. It is shown in this work that the ANN model second approach has the best overall performance, and this same model, besides the scenario with no crisis, presents better results when it has crisis periods in both training and testing phases instead of when it has crisis periods only in training or only in testing phases. As the ANN model first approach considerably underperforms its pair, the second approach, we can highlight the importance of VIX in enhancing the model by playing a normalizer role in the process.porArtifical neural networkRealized varianceRede neural artificialVIXVariância RealizadaEconomiaRedes neurais (Computação)Análise de variânciaVolatilidade (Finanças)Índices de mercado de açõesMercado financeiroEstimação da variância realizada do índice EWZ utilizando redes neurais artificiaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALGabriel S Miranda - Dissertação Mestrado.pdfGabriel S Miranda - Dissertação Mestrado.pdfPDFapplication/pdf1018455https://repositorio.fgv.br/bitstreams/09a4f974-c995-41bd-916d-be2ffcd9e70d/download0f8b54f0bd7077760a9735b6d1920af7MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/08717ca8-1605-432f-9657-dc361e62d4ee/downloaddfb340242cced38a6cca06c627998fa1MD56TEXTGabriel S Miranda - Dissertação Mestrado.pdf.txtGabriel S Miranda - Dissertação Mestrado.pdf.txtExtracted texttext/plain103877https://repositorio.fgv.br/bitstreams/c079708a-2515-4b0a-9233-9557a7b1df85/download9ad9cb4bd9f4f10579d78eba3da2fc2dMD59THUMBNAILGabriel S Miranda - Dissertação Mestrado.pdf.jpgGabriel S Miranda - Dissertação Mestrado.pdf.jpgGenerated Thumbnailimage/jpeg2936https://repositorio.fgv.br/bitstreams/29b2a684-ac38-4fac-b7f1-b224fe8995b1/downloadfabc7a3966abd4bf3d44386d15663f6aMD51010438/299702023-11-25 14:06:55.331open.accessoai:repositorio.fgv.br:10438/29970https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T14:06:55Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
title |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
spellingShingle |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais Miranda, Gabriel Soares Artifical neural network Realized variance Rede neural artificial VIX Variância Realizada Economia Redes neurais (Computação) Análise de variância Volatilidade (Finanças) Índices de mercado de ações Mercado financeiro |
title_short |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
title_full |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
title_fullStr |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
title_full_unstemmed |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
title_sort |
Estimação da variância realizada do índice EWZ utilizando redes neurais artificiais |
author |
Miranda, Gabriel Soares |
author_facet |
Miranda, Gabriel Soares |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Matsumoto, Élia Yathie Cipparrone, Flavio Almeida de Magalhães |
dc.contributor.author.fl_str_mv |
Miranda, Gabriel Soares |
dc.contributor.advisor1.fl_str_mv |
Pinto, Afonso de Campos |
contributor_str_mv |
Pinto, Afonso de Campos |
dc.subject.eng.fl_str_mv |
Artifical neural network Realized variance |
topic |
Artifical neural network Realized variance Rede neural artificial VIX Variância Realizada Economia Redes neurais (Computação) Análise de variância Volatilidade (Finanças) Índices de mercado de ações Mercado financeiro |
dc.subject.por.fl_str_mv |
Rede neural artificial VIX Variância Realizada |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Redes neurais (Computação) Análise de variância Volatilidade (Finanças) Índices de mercado de ações Mercado financeiro |
description |
Este trabalho apresentou a aplicação de uma nova técnica de estimação da variância realizada (RV) a partir de redes neurais artificiais (RNA) e comparou seu desempenho com os modelos de regressão linear múltipla (RLM) e de volatilidade implícita (IV) como preditor, a qual é obtida a partir do Volatility Index, VIX. O desempenho dos modelos é medido pelo R2 ajustado. A nova técnica proposta possui duas abordagens, a primeira utiliza a RV como vetor resposta da RNA enquanto a segunda utiliza o prêmio de risco de variância (VRP), o qual é composto pela combinação do VR e do VIX. As informações de mercado utilizadas neste trabalho são compreendidas entre 06 de Janeiro de 2016 e 01 de Maio de 2020 e foram coletadas a partir de um terminal Bloomberg. O ativo escolhido para o estudo é o índice MSCI Brazil, EWZ, negociado na bolsa de valores americanas NYSE. Os modelos são testados em quatro cenários distintos e observa-se que os desempenhos superiores ocorrem quando não há períodos de crise. Evidenciamos que o modelo de RNA com o VRP como vetor resposta apresenta o melhor desempenho entre os modelos estudados, e que este mesmo modelo, além do cenário sem crise, apresenta um desempenho superior quando há um período de crise em ambos os dados de treinamento e teste quando comparados com os cenários onde se tem uma crise apenas em um ou apenas em outro. Como o modelo de RNA com a RV como vetor resposta apresenta um desempenho consideravelmente inferior ao seu par, é válido ressaltar a importância do VIX em aumentar a acurácia deste modelo de RNA que utiliza o VRP como vetor resposta ao exercer um papel de normalizador. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-11-24 |
dc.date.accessioned.fl_str_mv |
2021-01-05T14:30:14Z |
dc.date.available.fl_str_mv |
2021-01-05T14:30:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/29970 |
url |
https://hdl.handle.net/10438/29970 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/09a4f974-c995-41bd-916d-be2ffcd9e70d/download https://repositorio.fgv.br/bitstreams/08717ca8-1605-432f-9657-dc361e62d4ee/download https://repositorio.fgv.br/bitstreams/c079708a-2515-4b0a-9233-9557a7b1df85/download https://repositorio.fgv.br/bitstreams/29b2a684-ac38-4fac-b7f1-b224fe8995b1/download |
bitstream.checksum.fl_str_mv |
0f8b54f0bd7077760a9735b6d1920af7 dfb340242cced38a6cca06c627998fa1 9ad9cb4bd9f4f10579d78eba3da2fc2d fabc7a3966abd4bf3d44386d15663f6a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797664236503040 |