Essays on conditional expectiles and extremiles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/35516 |
Resumo: | We investigate the behavior of Asymmetric Least Squares (ALS) estimators of conditional risk measures in the context of conditional heteroskedasticity. In particular, we focus on the estimation of the conditional expectile (Newey and Powell, 1987) and extremile (Daouia et al., 2019) in a GARCH framework because they are both law-invariant and coherent risk measures. We assess estimation risk by examining how the first-step GARCH estimation affects the asymptotic behavior of the ALS estimators. In particular, we derived both consistency and asymptotic normality of the two-step estimator for coditional expectiles. Monte Carlo simulations examine the effectiveness of several bootstrap approaches, showing that fixed-design residual resampling entails robust prediction intervals. Our empirical analysis reveals that conditional Asymmetric Least Squares estimators are perfectly reasonable candidates to assess the risk in the same manner as traditional quantile-based risk measures, also offering a complementary view on the dynamics of the gain-loss ratio. |
id |
FGV_5822f81f95d7aea2b89485f2bfade09e |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/35516 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Oliveira, Víctor Henriques deEscolas::EESPGenaro, Alan deHorta, Eduardo de OliveiraMendes, Eduardo FonsecaCavaliere, GiuseppeFernandes, Marcelo2024-07-04T12:18:22Z2024-07-04T12:18:22Z2024-06-11https://hdl.handle.net/10438/35516We investigate the behavior of Asymmetric Least Squares (ALS) estimators of conditional risk measures in the context of conditional heteroskedasticity. In particular, we focus on the estimation of the conditional expectile (Newey and Powell, 1987) and extremile (Daouia et al., 2019) in a GARCH framework because they are both law-invariant and coherent risk measures. We assess estimation risk by examining how the first-step GARCH estimation affects the asymptotic behavior of the ALS estimators. In particular, we derived both consistency and asymptotic normality of the two-step estimator for coditional expectiles. Monte Carlo simulations examine the effectiveness of several bootstrap approaches, showing that fixed-design residual resampling entails robust prediction intervals. Our empirical analysis reveals that conditional Asymmetric Least Squares estimators are perfectly reasonable candidates to assess the risk in the same manner as traditional quantile-based risk measures, also offering a complementary view on the dynamics of the gain-loss ratio.Esta tese de doutorado investiga os estimadores de Mínimos Quadrados Assimetricos (ALS) para medidas de risco condicionais no contexto de séries financeiras heteroscedásticas. Em particular, este estudo concentrou-se na estimativa do expectil (Newey and Powell, 1987) e do extremil (Daouia et al., 2019) condicional a uma estrutura GARCH, dado que ambas medidas de risco são coerentes e invariantes em lei. Para tanto, avaliou-se o risco ˜de estimativa examinando como a estimativa GARCH da primeira etapa afeta o comportamento assintótico dos estimadores ALS. Em particular, demonstrou-se a consistência e a normalidade do estimator em duas etapas para os expectis conditionais. As simulações de Monte Carlo examinam a eficácia de várias abordagens de bootstrap, mostrando que a reamostragem residual de design fixo implica intervalos de previsão robustos. Por sua ˜vez, a análise empírica revela que os estimadores de Mínimos Quadrados Assimétricos condicionais são medidas capazes de mensurar o risco tão bem quanto as tradicionais medidas baseadas em quantis, oferecendo ainda uma visão complementar sobre a dinâmica da razão de ganho-perda.engAsymmetric least squaresExpectilesExtremilesGARCH modelsRisk managementMínimos quadrados assimétricosExpectilExtremilModelos GARCHGerenciamento de riscoEconomiaMínimos quadradosModelos econométricosAnálise de séries temporaisAdministração de risco financeiroEssays on conditional expectiles and extremilesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALVictor_Henriques_Thesis_Conditional_Asymmetric_Least_Squares.pdfVictor_Henriques_Thesis_Conditional_Asymmetric_Least_Squares.pdfPDFapplication/pdf3525501https://repositorio.fgv.br/bitstreams/ce95bbbc-c46c-4db7-9394-b0e893e0217a/download6bb64880e638f55e2bab2406c64a6b7aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/7e8f4c8e-cdb5-4b7b-96cf-896b796aacae/download2a4b67231f701c416a809246e7a10077MD52TEXTVictor_Henriques_Thesis_Conditional_Asymmetric_Least_Squares.pdf.txtVictor_Henriques_Thesis_Conditional_Asymmetric_Least_Squares.pdf.txtExtracted texttext/plain102023https://repositorio.fgv.br/bitstreams/59e2e6f9-11d4-45a7-8503-7c2be8facc92/download7dc229e30e9c5d1149484a85c774f967MD53THUMBNAILVictor_Henriques_Thesis_Conditional_Asymmetric_Least_Squares.pdf.jpgVictor_Henriques_Thesis_Conditional_Asymmetric_Least_Squares.pdf.jpgGenerated Thumbnailimage/jpeg2607https://repositorio.fgv.br/bitstreams/a9760675-65d3-4af5-92fd-3ce00588f71c/downloada4dcd06fe7f0ff59e5b6536a778a24feMD5410438/355162024-07-04 18:46:06.39open.accessoai:repositorio.fgv.br:10438/35516https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-04T18:46:06Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K |
dc.title.eng.fl_str_mv |
Essays on conditional expectiles and extremiles |
title |
Essays on conditional expectiles and extremiles |
spellingShingle |
Essays on conditional expectiles and extremiles Oliveira, Víctor Henriques de Asymmetric least squares Expectiles Extremiles GARCH models Risk management Mínimos quadrados assimétricos Expectil Extremil Modelos GARCH Gerenciamento de risco Economia Mínimos quadrados Modelos econométricos Análise de séries temporais Administração de risco financeiro |
title_short |
Essays on conditional expectiles and extremiles |
title_full |
Essays on conditional expectiles and extremiles |
title_fullStr |
Essays on conditional expectiles and extremiles |
title_full_unstemmed |
Essays on conditional expectiles and extremiles |
title_sort |
Essays on conditional expectiles and extremiles |
author |
Oliveira, Víctor Henriques de |
author_facet |
Oliveira, Víctor Henriques de |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Genaro, Alan de Horta, Eduardo de Oliveira Mendes, Eduardo Fonseca Cavaliere, Giuseppe |
dc.contributor.author.fl_str_mv |
Oliveira, Víctor Henriques de |
dc.contributor.advisor1.fl_str_mv |
Fernandes, Marcelo |
contributor_str_mv |
Fernandes, Marcelo |
dc.subject.eng.fl_str_mv |
Asymmetric least squares Expectiles Extremiles GARCH models Risk management |
topic |
Asymmetric least squares Expectiles Extremiles GARCH models Risk management Mínimos quadrados assimétricos Expectil Extremil Modelos GARCH Gerenciamento de risco Economia Mínimos quadrados Modelos econométricos Análise de séries temporais Administração de risco financeiro |
dc.subject.por.fl_str_mv |
Mínimos quadrados assimétricos Expectil Extremil Modelos GARCH Gerenciamento de risco |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Mínimos quadrados Modelos econométricos Análise de séries temporais Administração de risco financeiro |
description |
We investigate the behavior of Asymmetric Least Squares (ALS) estimators of conditional risk measures in the context of conditional heteroskedasticity. In particular, we focus on the estimation of the conditional expectile (Newey and Powell, 1987) and extremile (Daouia et al., 2019) in a GARCH framework because they are both law-invariant and coherent risk measures. We assess estimation risk by examining how the first-step GARCH estimation affects the asymptotic behavior of the ALS estimators. In particular, we derived both consistency and asymptotic normality of the two-step estimator for coditional expectiles. Monte Carlo simulations examine the effectiveness of several bootstrap approaches, showing that fixed-design residual resampling entails robust prediction intervals. Our empirical analysis reveals that conditional Asymmetric Least Squares estimators are perfectly reasonable candidates to assess the risk in the same manner as traditional quantile-based risk measures, also offering a complementary view on the dynamics of the gain-loss ratio. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-07-04T12:18:22Z |
dc.date.available.fl_str_mv |
2024-07-04T12:18:22Z |
dc.date.issued.fl_str_mv |
2024-06-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/35516 |
url |
https://hdl.handle.net/10438/35516 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/ce95bbbc-c46c-4db7-9394-b0e893e0217a/download https://repositorio.fgv.br/bitstreams/7e8f4c8e-cdb5-4b7b-96cf-896b796aacae/download https://repositorio.fgv.br/bitstreams/59e2e6f9-11d4-45a7-8503-7c2be8facc92/download https://repositorio.fgv.br/bitstreams/a9760675-65d3-4af5-92fd-3ce00588f71c/download |
bitstream.checksum.fl_str_mv |
6bb64880e638f55e2bab2406c64a6b7a 2a4b67231f701c416a809246e7a10077 7dc229e30e9c5d1149484a85c774f967 a4dcd06fe7f0ff59e5b6536a778a24fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797809176969216 |