Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade

Detalhes bibliográficos
Autor(a) principal: Ito, Fabio Yoshikazu
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/31324
Resumo: The Merton (1976) model calculates the option price considering jumps on the security price, for our work we are going to use a special case where the security price goes immediately to zero (Jump to Ruin). One parameter to calculate the option price in this particular case is the default probability, inverting the logic of the model, we are going to calculate the default probability using the option prices. For this, we are going to use the Equity of Petrobras (PETR4), that is, we will calculate we default probability of Petrobras. In order to check if our work is valid we will compare the default probabilities calculated by the Merton (1976) Model with the the equivalent Credit Default Swap (CDS). Knowing that Options does not have liquidity in mid and long maturities and CDS does not have it in short maturities, we are going to see that the comparison was not satisfactory. As suggestion to use the model in a different way, we will use the default probability from the CDS to find the volatility Smile in options for mid and long maturities.
id FGV_7a534490e9a8d3037c6dc4254e1d6a2e
oai_identifier_str oai:repositorio.fgv.br:10438/31324
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Ito, Fabio YoshikazuEscolas::EESPAthayde, Gustavo Monteiro deCatalão, André BorgesPinto, Afonso de Campos2021-11-29T12:31:59Z2021-11-29T12:31:59Z2021-12https://hdl.handle.net/10438/31324The Merton (1976) model calculates the option price considering jumps on the security price, for our work we are going to use a special case where the security price goes immediately to zero (Jump to Ruin). One parameter to calculate the option price in this particular case is the default probability, inverting the logic of the model, we are going to calculate the default probability using the option prices. For this, we are going to use the Equity of Petrobras (PETR4), that is, we will calculate we default probability of Petrobras. In order to check if our work is valid we will compare the default probabilities calculated by the Merton (1976) Model with the the equivalent Credit Default Swap (CDS). Knowing that Options does not have liquidity in mid and long maturities and CDS does not have it in short maturities, we are going to see that the comparison was not satisfactory. As suggestion to use the model in a different way, we will use the default probability from the CDS to find the volatility Smile in options for mid and long maturities.O modelo de Merton (1976) precifica uma opção considerando saltos no preço da ação, neste trabalho utilizaremos o caso particular deste modelo onde ocorre um salto do preço da ação para zero (Jump to Ruin), ou seja, o emissor do ativo objeto entra em Default. Um dos parâmetros de entrada desse caso particular é a hazard rate ou probabilidade de default, utilizando o modelo de forma inversa, calcularemos a probabilidade de default a partir do preço das opções. No nosso caso utilizaremos como ativo a PETR4, ou seja, calcularemos a probabilidade de Default da Petrobras. Para validar nosso trabalho, iremos comparar os resultados de probabilidade de default encontradas nas opções utilizando o método de Merton (1976) com as probabilidades de default extraídas dos Credit Default Swap (CDS) do mesmo emissor negociadas a mercado. Devido a pouca liquidez das opções mais longas e pouca liquidez nos CDS mais curtos, não obtivemos resultados satisfatórios, porém encontramos uma outra utilidade para o método de Merton (1976). Utilizamos as probabilidades de Default dos CDS para encontrar o Smile de volatilidade em opções mais longas com pouca ou nenhuma liquidez.porJump to ruinProbabilidade de defaultCredit default swapProbabilidade de defaultSmile de VolatilidadeEconomiaEngenharia financeiraTeoria da previsãoAções (Finanças)Merton, Modelo deProjeção da probabilidade de default de uma empresa através do seu smile de volatilidadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALTese_Fabio_Ito_v14.pdfTese_Fabio_Ito_v14.pdfapplication/pdf6790038https://repositorio.fgv.br/bitstreams/4ff1e451-6967-47cc-8294-e759b2e8729e/download5fddaeba326ddf2f69577b74ff52e467MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/6daf16f9-f38d-4032-8d5b-4fdc9fde5e6c/downloaddfb340242cced38a6cca06c627998fa1MD58TEXTTese_Fabio_Ito_v14.pdf.txtTese_Fabio_Ito_v14.pdf.txtExtracted texttext/plain58478https://repositorio.fgv.br/bitstreams/863d4c2e-6f35-4acb-9f50-e0f6d9a4a8e1/download973b7a09d842674a8e7fe75ce2286fe9MD511THUMBNAILTese_Fabio_Ito_v14.pdf.jpgTese_Fabio_Ito_v14.pdf.jpgGenerated Thumbnailimage/jpeg3007https://repositorio.fgv.br/bitstreams/5633ac42-e741-4e39-a745-2a882c6089e4/downloadd3d3a52b743a0f9e1f5ed5d752092222MD51210438/313242023-11-26 02:13:48.472open.accessoai:repositorio.fgv.br:10438/31324https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T02:13:48Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
title Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
spellingShingle Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
Ito, Fabio Yoshikazu
Jump to ruin
Probabilidade de default
Credit default swap
Probabilidade de default
Smile de Volatilidade
Economia
Engenharia financeira
Teoria da previsão
Ações (Finanças)
Merton, Modelo de
title_short Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
title_full Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
title_fullStr Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
title_full_unstemmed Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
title_sort Projeção da probabilidade de default de uma empresa através do seu smile de volatilidade
author Ito, Fabio Yoshikazu
author_facet Ito, Fabio Yoshikazu
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Athayde, Gustavo Monteiro de
Catalão, André Borges
dc.contributor.author.fl_str_mv Ito, Fabio Yoshikazu
dc.contributor.advisor1.fl_str_mv Pinto, Afonso de Campos
contributor_str_mv Pinto, Afonso de Campos
dc.subject.eng.fl_str_mv Jump to ruin
Probabilidade de default
Credit default swap
topic Jump to ruin
Probabilidade de default
Credit default swap
Probabilidade de default
Smile de Volatilidade
Economia
Engenharia financeira
Teoria da previsão
Ações (Finanças)
Merton, Modelo de
dc.subject.por.fl_str_mv Probabilidade de default
Smile de Volatilidade
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Engenharia financeira
Teoria da previsão
Ações (Finanças)
Merton, Modelo de
description The Merton (1976) model calculates the option price considering jumps on the security price, for our work we are going to use a special case where the security price goes immediately to zero (Jump to Ruin). One parameter to calculate the option price in this particular case is the default probability, inverting the logic of the model, we are going to calculate the default probability using the option prices. For this, we are going to use the Equity of Petrobras (PETR4), that is, we will calculate we default probability of Petrobras. In order to check if our work is valid we will compare the default probabilities calculated by the Merton (1976) Model with the the equivalent Credit Default Swap (CDS). Knowing that Options does not have liquidity in mid and long maturities and CDS does not have it in short maturities, we are going to see that the comparison was not satisfactory. As suggestion to use the model in a different way, we will use the default probability from the CDS to find the volatility Smile in options for mid and long maturities.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-29T12:31:59Z
dc.date.available.fl_str_mv 2021-11-29T12:31:59Z
dc.date.issued.fl_str_mv 2021-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/31324
url https://hdl.handle.net/10438/31324
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/4ff1e451-6967-47cc-8294-e759b2e8729e/download
https://repositorio.fgv.br/bitstreams/6daf16f9-f38d-4032-8d5b-4fdc9fde5e6c/download
https://repositorio.fgv.br/bitstreams/863d4c2e-6f35-4acb-9f50-e0f6d9a4a8e1/download
https://repositorio.fgv.br/bitstreams/5633ac42-e741-4e39-a745-2a882c6089e4/download
bitstream.checksum.fl_str_mv 5fddaeba326ddf2f69577b74ff52e467
dfb340242cced38a6cca06c627998fa1
973b7a09d842674a8e7fe75ce2286fe9
d3d3a52b743a0f9e1f5ed5d752092222
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797807825354752