Nonparametric extreme value mixture models: applications to insurance losses
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/30725 |
Resumo: | Modelling insurance losses is a challenging topic to actuaries and practitioners in the insurance industry. Commonly used loss models based on standard parametric density functions (Lognormal, Gamma, Weibull, Burr Type XII, Inverse Gaussian and Inverse Gamma) are often able to fit the bulk of the claim size distributions well but they fail to describe the behaviour of the most extremal observations. A popular approach used to overcome this limitation is to isolate the extreme data points and model them separately using Extreme Value Theory and the Generalized Pareto Distribution, an approach known as Peaks-Over-Threshold (POT) method. However, in most empirical applications, actuaries are interested in obtain a single model that provides a suitable global fit over the whole range of the distribution. In this thesis, we consider a nonparametric extreme value mixture model that is able to fit both small and large claims simultaneously. The model is extremely flexible due to its nonparametric component, avoiding the need to impose a functional form to the bulk of the loss distribution, as in most of the previous mixture approaches proposed in the actuarial literature. Further, the kernel density estimator has just a single extra parameter to be estimated, overcoming the problem of high computational burden related to other similar models. To illustrate the applicability and effectiveness of our model in the context of property and casualty losses, we consider three real data sets widely accessible and well-studied in the actuarial literature. The results suggest that the model provides a superior fit when compared with other existing alternatives. |
id |
FGV_bee2b14c329c5ca436969670d1eff873 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/30725 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Galdino, Alexandre BassiEscolas::EAESPSchiozer, Rafael FelipeFlores, Eduardo da SilvaGenaro, Alan de2021-06-15T23:16:08Z2021-06-15T23:16:08Z2021-05-28https://hdl.handle.net/10438/30725Modelling insurance losses is a challenging topic to actuaries and practitioners in the insurance industry. Commonly used loss models based on standard parametric density functions (Lognormal, Gamma, Weibull, Burr Type XII, Inverse Gaussian and Inverse Gamma) are often able to fit the bulk of the claim size distributions well but they fail to describe the behaviour of the most extremal observations. A popular approach used to overcome this limitation is to isolate the extreme data points and model them separately using Extreme Value Theory and the Generalized Pareto Distribution, an approach known as Peaks-Over-Threshold (POT) method. However, in most empirical applications, actuaries are interested in obtain a single model that provides a suitable global fit over the whole range of the distribution. In this thesis, we consider a nonparametric extreme value mixture model that is able to fit both small and large claims simultaneously. The model is extremely flexible due to its nonparametric component, avoiding the need to impose a functional form to the bulk of the loss distribution, as in most of the previous mixture approaches proposed in the actuarial literature. Further, the kernel density estimator has just a single extra parameter to be estimated, overcoming the problem of high computational burden related to other similar models. To illustrate the applicability and effectiveness of our model in the context of property and casualty losses, we consider three real data sets widely accessible and well-studied in the actuarial literature. The results suggest that the model provides a superior fit when compared with other existing alternatives.A modelagem da severidade de sinistros é um tópico desafiador para atuários e profissionais que atuam no mercado segurador. Modelos paramétricos comumente utilizados para aproximar as distribuições de severidade (Lognormal, Gama, Weibull, Burr Tipo XII, Gaussiana Inversa e Gamma Inversa) são capazes de fornecer um bom ajuste para os dados localizados no corpo das distribuições, mas falham ao descrever o comportamento das observações mais extremas. Uma abordagem popular empregada para superar essa limitação consiste em isolar a porção extrema das caudas e modelá-las separadamente utilizando a célebre Teoria de Valores Extremos e a Distribuição Generalizada de Pareto, um método conhecido como Peaks-Over-Threshold (POT). Entretanto, na maioria das aplicações práticas, atuários estão interessados em obter um único modelo que proporcione um ajuste satisfatório em todo o suporte da distribuição. Nesta dissertação, consideramos uma mistura não-paramétrica de valores extremos capaz de modelar conjuntamente pequenas e grandes perdas. O modelo possui a vantagem de ser extremamente flexível devido ao seu componente não-paramétrico, evitando-se que seja necessário impor uma forma funcional para o corpo da distribuição, como na maioria dos modelos de mistura propostos na literatura atuarial. Adicionalmente, o estimador de densidade kernel tem apenas um único parâmetro adicional a ser estimado, superando o problema da complexidade computacional relacionado a modelos similares. Para demonstrar a aplicabilidade e efetividade do modelo proposto no contexto da modelagem da severidade de sinistros, utilizamos três conjuntos de dados reais amplamente acessíveis e bastante explorados na literatura atuarial. Os resultados sugerem que o modelo analisado proporciona um ajuste superior quando comparado às outras alternativas existentes.engInsurance lossesExtreme value theoryNonparametric methodsKernel densityFinite mixture modelsSeveridade de sinistrosTeoria de valores extremosMétodos não-paramétricosDensidade KernelModelos de mistura finitaAdministração de empresasTeoria dos valores extremosEstatística não paramétricaSinistro (Seguros)Estatística - AnáliseNonparametric extreme value mixture models: applications to insurance lossesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALDissertacao_Alexandre_Bassi_vF.pdfDissertacao_Alexandre_Bassi_vF.pdfPDFapplication/pdf1030293https://repositorio.fgv.br/bitstreams/a8089c63-20ab-4544-a6d5-04f49f31e329/download22523888609c6b85ccc4304602bfe534MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/cdba8541-8f4d-498d-9452-3307312aa8c0/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertacao_Alexandre_Bassi_vF.pdf.txtDissertacao_Alexandre_Bassi_vF.pdf.txtExtracted texttext/plain102659https://repositorio.fgv.br/bitstreams/b485f49d-9914-413e-a228-a587342d7707/downloadde03f505c91f6e16f4e9257fd7858a30MD55THUMBNAILDissertacao_Alexandre_Bassi_vF.pdf.jpgDissertacao_Alexandre_Bassi_vF.pdf.jpgGenerated Thumbnailimage/jpeg2894https://repositorio.fgv.br/bitstreams/30a63205-6c59-4a81-869e-1610a9c057c8/download73d85fbcc005c819e6e460e5d81e72ecMD5610438/307252023-11-25 17:51:02.468open.accessoai:repositorio.fgv.br:10438/30725https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T17:51:02Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Nonparametric extreme value mixture models: applications to insurance losses |
title |
Nonparametric extreme value mixture models: applications to insurance losses |
spellingShingle |
Nonparametric extreme value mixture models: applications to insurance losses Galdino, Alexandre Bassi Insurance losses Extreme value theory Nonparametric methods Kernel density Finite mixture models Severidade de sinistros Teoria de valores extremos Métodos não-paramétricos Densidade Kernel Modelos de mistura finita Administração de empresas Teoria dos valores extremos Estatística não paramétrica Sinistro (Seguros) Estatística - Análise |
title_short |
Nonparametric extreme value mixture models: applications to insurance losses |
title_full |
Nonparametric extreme value mixture models: applications to insurance losses |
title_fullStr |
Nonparametric extreme value mixture models: applications to insurance losses |
title_full_unstemmed |
Nonparametric extreme value mixture models: applications to insurance losses |
title_sort |
Nonparametric extreme value mixture models: applications to insurance losses |
author |
Galdino, Alexandre Bassi |
author_facet |
Galdino, Alexandre Bassi |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EAESP |
dc.contributor.member.none.fl_str_mv |
Schiozer, Rafael Felipe Flores, Eduardo da Silva |
dc.contributor.author.fl_str_mv |
Galdino, Alexandre Bassi |
dc.contributor.advisor1.fl_str_mv |
Genaro, Alan de |
contributor_str_mv |
Genaro, Alan de |
dc.subject.eng.fl_str_mv |
Insurance losses Extreme value theory Nonparametric methods Kernel density Finite mixture models |
topic |
Insurance losses Extreme value theory Nonparametric methods Kernel density Finite mixture models Severidade de sinistros Teoria de valores extremos Métodos não-paramétricos Densidade Kernel Modelos de mistura finita Administração de empresas Teoria dos valores extremos Estatística não paramétrica Sinistro (Seguros) Estatística - Análise |
dc.subject.por.fl_str_mv |
Severidade de sinistros Teoria de valores extremos Métodos não-paramétricos Densidade Kernel Modelos de mistura finita |
dc.subject.area.por.fl_str_mv |
Administração de empresas |
dc.subject.bibliodata.por.fl_str_mv |
Teoria dos valores extremos Estatística não paramétrica Sinistro (Seguros) Estatística - Análise |
description |
Modelling insurance losses is a challenging topic to actuaries and practitioners in the insurance industry. Commonly used loss models based on standard parametric density functions (Lognormal, Gamma, Weibull, Burr Type XII, Inverse Gaussian and Inverse Gamma) are often able to fit the bulk of the claim size distributions well but they fail to describe the behaviour of the most extremal observations. A popular approach used to overcome this limitation is to isolate the extreme data points and model them separately using Extreme Value Theory and the Generalized Pareto Distribution, an approach known as Peaks-Over-Threshold (POT) method. However, in most empirical applications, actuaries are interested in obtain a single model that provides a suitable global fit over the whole range of the distribution. In this thesis, we consider a nonparametric extreme value mixture model that is able to fit both small and large claims simultaneously. The model is extremely flexible due to its nonparametric component, avoiding the need to impose a functional form to the bulk of the loss distribution, as in most of the previous mixture approaches proposed in the actuarial literature. Further, the kernel density estimator has just a single extra parameter to be estimated, overcoming the problem of high computational burden related to other similar models. To illustrate the applicability and effectiveness of our model in the context of property and casualty losses, we consider three real data sets widely accessible and well-studied in the actuarial literature. The results suggest that the model provides a superior fit when compared with other existing alternatives. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-06-15T23:16:08Z |
dc.date.available.fl_str_mv |
2021-06-15T23:16:08Z |
dc.date.issued.fl_str_mv |
2021-05-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/30725 |
url |
https://hdl.handle.net/10438/30725 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/a8089c63-20ab-4544-a6d5-04f49f31e329/download https://repositorio.fgv.br/bitstreams/cdba8541-8f4d-498d-9452-3307312aa8c0/download https://repositorio.fgv.br/bitstreams/b485f49d-9914-413e-a228-a587342d7707/download https://repositorio.fgv.br/bitstreams/30a63205-6c59-4a81-869e-1610a9c057c8/download |
bitstream.checksum.fl_str_mv |
22523888609c6b85ccc4304602bfe534 dfb340242cced38a6cca06c627998fa1 de03f505c91f6e16f4e9257fd7858a30 73d85fbcc005c819e6e460e5d81e72ec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797659729723392 |