Nonparametric extreme value mixture models: applications to insurance losses

Detalhes bibliográficos
Autor(a) principal: Galdino, Alexandre Bassi
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/30725
Resumo: Modelling insurance losses is a challenging topic to actuaries and practitioners in the insurance industry. Commonly used loss models based on standard parametric density functions (Lognormal, Gamma, Weibull, Burr Type XII, Inverse Gaussian and Inverse Gamma) are often able to fit the bulk of the claim size distributions well but they fail to describe the behaviour of the most extremal observations. A popular approach used to overcome this limitation is to isolate the extreme data points and model them separately using Extreme Value Theory and the Generalized Pareto Distribution, an approach known as Peaks-Over-Threshold (POT) method. However, in most empirical applications, actuaries are interested in obtain a single model that provides a suitable global fit over the whole range of the distribution. In this thesis, we consider a nonparametric extreme value mixture model that is able to fit both small and large claims simultaneously. The model is extremely flexible due to its nonparametric component, avoiding the need to impose a functional form to the bulk of the loss distribution, as in most of the previous mixture approaches proposed in the actuarial literature. Further, the kernel density estimator has just a single extra parameter to be estimated, overcoming the problem of high computational burden related to other similar models. To illustrate the applicability and effectiveness of our model in the context of property and casualty losses, we consider three real data sets widely accessible and well-studied in the actuarial literature. The results suggest that the model provides a superior fit when compared with other existing alternatives.
id FGV_bee2b14c329c5ca436969670d1eff873
oai_identifier_str oai:repositorio.fgv.br:10438/30725
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Galdino, Alexandre BassiEscolas::EAESPSchiozer, Rafael FelipeFlores, Eduardo da SilvaGenaro, Alan de2021-06-15T23:16:08Z2021-06-15T23:16:08Z2021-05-28https://hdl.handle.net/10438/30725Modelling insurance losses is a challenging topic to actuaries and practitioners in the insurance industry. Commonly used loss models based on standard parametric density functions (Lognormal, Gamma, Weibull, Burr Type XII, Inverse Gaussian and Inverse Gamma) are often able to fit the bulk of the claim size distributions well but they fail to describe the behaviour of the most extremal observations. A popular approach used to overcome this limitation is to isolate the extreme data points and model them separately using Extreme Value Theory and the Generalized Pareto Distribution, an approach known as Peaks-Over-Threshold (POT) method. However, in most empirical applications, actuaries are interested in obtain a single model that provides a suitable global fit over the whole range of the distribution. In this thesis, we consider a nonparametric extreme value mixture model that is able to fit both small and large claims simultaneously. The model is extremely flexible due to its nonparametric component, avoiding the need to impose a functional form to the bulk of the loss distribution, as in most of the previous mixture approaches proposed in the actuarial literature. Further, the kernel density estimator has just a single extra parameter to be estimated, overcoming the problem of high computational burden related to other similar models. To illustrate the applicability and effectiveness of our model in the context of property and casualty losses, we consider three real data sets widely accessible and well-studied in the actuarial literature. The results suggest that the model provides a superior fit when compared with other existing alternatives.A modelagem da severidade de sinistros é um tópico desafiador para atuários e profissionais que atuam no mercado segurador. Modelos paramétricos comumente utilizados para aproximar as distribuições de severidade (Lognormal, Gama, Weibull, Burr Tipo XII, Gaussiana Inversa e Gamma Inversa) são capazes de fornecer um bom ajuste para os dados localizados no corpo das distribuições, mas falham ao descrever o comportamento das observações mais extremas. Uma abordagem popular empregada para superar essa limitação consiste em isolar a porção extrema das caudas e modelá-las separadamente utilizando a célebre Teoria de Valores Extremos e a Distribuição Generalizada de Pareto, um método conhecido como Peaks-Over-Threshold (POT). Entretanto, na maioria das aplicações práticas, atuários estão interessados em obter um único modelo que proporcione um ajuste satisfatório em todo o suporte da distribuição. Nesta dissertação, consideramos uma mistura não-paramétrica de valores extremos capaz de modelar conjuntamente pequenas e grandes perdas. O modelo possui a vantagem de ser extremamente flexível devido ao seu componente não-paramétrico, evitando-se que seja necessário impor uma forma funcional para o corpo da distribuição, como na maioria dos modelos de mistura propostos na literatura atuarial. Adicionalmente, o estimador de densidade kernel tem apenas um único parâmetro adicional a ser estimado, superando o problema da complexidade computacional relacionado a modelos similares. Para demonstrar a aplicabilidade e efetividade do modelo proposto no contexto da modelagem da severidade de sinistros, utilizamos três conjuntos de dados reais amplamente acessíveis e bastante explorados na literatura atuarial. Os resultados sugerem que o modelo analisado proporciona um ajuste superior quando comparado às outras alternativas existentes.engInsurance lossesExtreme value theoryNonparametric methodsKernel densityFinite mixture modelsSeveridade de sinistrosTeoria de valores extremosMétodos não-paramétricosDensidade KernelModelos de mistura finitaAdministração de empresasTeoria dos valores extremosEstatística não paramétricaSinistro (Seguros)Estatística - AnáliseNonparametric extreme value mixture models: applications to insurance lossesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALDissertacao_Alexandre_Bassi_vF.pdfDissertacao_Alexandre_Bassi_vF.pdfPDFapplication/pdf1030293https://repositorio.fgv.br/bitstreams/a8089c63-20ab-4544-a6d5-04f49f31e329/download22523888609c6b85ccc4304602bfe534MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/cdba8541-8f4d-498d-9452-3307312aa8c0/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertacao_Alexandre_Bassi_vF.pdf.txtDissertacao_Alexandre_Bassi_vF.pdf.txtExtracted texttext/plain102659https://repositorio.fgv.br/bitstreams/b485f49d-9914-413e-a228-a587342d7707/downloadde03f505c91f6e16f4e9257fd7858a30MD55THUMBNAILDissertacao_Alexandre_Bassi_vF.pdf.jpgDissertacao_Alexandre_Bassi_vF.pdf.jpgGenerated Thumbnailimage/jpeg2894https://repositorio.fgv.br/bitstreams/30a63205-6c59-4a81-869e-1610a9c057c8/download73d85fbcc005c819e6e460e5d81e72ecMD5610438/307252023-11-25 17:51:02.468open.accessoai:repositorio.fgv.br:10438/30725https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T17:51:02Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Nonparametric extreme value mixture models: applications to insurance losses
title Nonparametric extreme value mixture models: applications to insurance losses
spellingShingle Nonparametric extreme value mixture models: applications to insurance losses
Galdino, Alexandre Bassi
Insurance losses
Extreme value theory
Nonparametric methods
Kernel density
Finite mixture models
Severidade de sinistros
Teoria de valores extremos
Métodos não-paramétricos
Densidade Kernel
Modelos de mistura finita
Administração de empresas
Teoria dos valores extremos
Estatística não paramétrica
Sinistro (Seguros)
Estatística - Análise
title_short Nonparametric extreme value mixture models: applications to insurance losses
title_full Nonparametric extreme value mixture models: applications to insurance losses
title_fullStr Nonparametric extreme value mixture models: applications to insurance losses
title_full_unstemmed Nonparametric extreme value mixture models: applications to insurance losses
title_sort Nonparametric extreme value mixture models: applications to insurance losses
author Galdino, Alexandre Bassi
author_facet Galdino, Alexandre Bassi
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EAESP
dc.contributor.member.none.fl_str_mv Schiozer, Rafael Felipe
Flores, Eduardo da Silva
dc.contributor.author.fl_str_mv Galdino, Alexandre Bassi
dc.contributor.advisor1.fl_str_mv Genaro, Alan de
contributor_str_mv Genaro, Alan de
dc.subject.eng.fl_str_mv Insurance losses
Extreme value theory
Nonparametric methods
Kernel density
Finite mixture models
topic Insurance losses
Extreme value theory
Nonparametric methods
Kernel density
Finite mixture models
Severidade de sinistros
Teoria de valores extremos
Métodos não-paramétricos
Densidade Kernel
Modelos de mistura finita
Administração de empresas
Teoria dos valores extremos
Estatística não paramétrica
Sinistro (Seguros)
Estatística - Análise
dc.subject.por.fl_str_mv Severidade de sinistros
Teoria de valores extremos
Métodos não-paramétricos
Densidade Kernel
Modelos de mistura finita
dc.subject.area.por.fl_str_mv Administração de empresas
dc.subject.bibliodata.por.fl_str_mv Teoria dos valores extremos
Estatística não paramétrica
Sinistro (Seguros)
Estatística - Análise
description Modelling insurance losses is a challenging topic to actuaries and practitioners in the insurance industry. Commonly used loss models based on standard parametric density functions (Lognormal, Gamma, Weibull, Burr Type XII, Inverse Gaussian and Inverse Gamma) are often able to fit the bulk of the claim size distributions well but they fail to describe the behaviour of the most extremal observations. A popular approach used to overcome this limitation is to isolate the extreme data points and model them separately using Extreme Value Theory and the Generalized Pareto Distribution, an approach known as Peaks-Over-Threshold (POT) method. However, in most empirical applications, actuaries are interested in obtain a single model that provides a suitable global fit over the whole range of the distribution. In this thesis, we consider a nonparametric extreme value mixture model that is able to fit both small and large claims simultaneously. The model is extremely flexible due to its nonparametric component, avoiding the need to impose a functional form to the bulk of the loss distribution, as in most of the previous mixture approaches proposed in the actuarial literature. Further, the kernel density estimator has just a single extra parameter to be estimated, overcoming the problem of high computational burden related to other similar models. To illustrate the applicability and effectiveness of our model in the context of property and casualty losses, we consider three real data sets widely accessible and well-studied in the actuarial literature. The results suggest that the model provides a superior fit when compared with other existing alternatives.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-06-15T23:16:08Z
dc.date.available.fl_str_mv 2021-06-15T23:16:08Z
dc.date.issued.fl_str_mv 2021-05-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/30725
url https://hdl.handle.net/10438/30725
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/a8089c63-20ab-4544-a6d5-04f49f31e329/download
https://repositorio.fgv.br/bitstreams/cdba8541-8f4d-498d-9452-3307312aa8c0/download
https://repositorio.fgv.br/bitstreams/b485f49d-9914-413e-a228-a587342d7707/download
https://repositorio.fgv.br/bitstreams/30a63205-6c59-4a81-869e-1610a9c057c8/download
bitstream.checksum.fl_str_mv 22523888609c6b85ccc4304602bfe534
dfb340242cced38a6cca06c627998fa1
de03f505c91f6e16f4e9257fd7858a30
73d85fbcc005c819e6e460e5d81e72ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797659729723392