Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel

Detalhes bibliográficos
Autor(a) principal: Iolanda Karla Santana dos Santos
Data de Publicação: 2020
Outros Autores: Wolney Lisbôa Conde
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cadernos de Saúde Pública
Texto Completo: https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498
Resumo: This study aimed to describe the estimated means for weight, height, and body mass index (BMI) according to two imputation methods, using data from Vigitel (Risk and Protective Factors Surveillance System for Chronic Non-Communicable Diseases Through Telephone Interview). This was a cross-sectional study that used secondary data from the Vigitel survey from 2006 to 2017. The two imputation methods used in the study were hot deck and Predictive Mean Matching (PMM). The weight and height variables imputed by hot deck were provided by Vigitel. Two models were conducted with PMM: (i) explanatory variables - city, sex, age in years, race/color, and schooling; (ii) explanatory variables - city, sex, and age in years. Weight and height were the outcome variables in the two models. PMM combines linear regression and random selection of the value for imputation. Linear prediction is used as a measure of distance between the missing value and the possible donors, thereby creating the virtual space with the candidate cases for yielding the value for imputation. One of the candidates from the pool is randomly selected, and its value is assigned to the missing unit. BMI was calculated by dividing weight in kilograms by height squared. The result shows the means and standard deviations for weight, height, and BMI according to imputation method and year. The estimates used the survey module from Stata, which considers the sampling effects. The mean values for weight, height, and BMI estimated by hot deck and PMM were similar. The results with the Vigitel data suggest the applicability of PMM to the set of health surveys.
id FIOCRUZ-5_a511d344eeee15b048366e3c617ad34e
oai_identifier_str oai:ojs.teste-cadernos.ensp.fiocruz.br:article/7498
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling Predictive Mean Matching como método de imputação alternativo ao hot deck no VigitelInquéritos NutricionaisVigilânciaEstado NutricionalEpidemiologiaThis study aimed to describe the estimated means for weight, height, and body mass index (BMI) according to two imputation methods, using data from Vigitel (Risk and Protective Factors Surveillance System for Chronic Non-Communicable Diseases Through Telephone Interview). This was a cross-sectional study that used secondary data from the Vigitel survey from 2006 to 2017. The two imputation methods used in the study were hot deck and Predictive Mean Matching (PMM). The weight and height variables imputed by hot deck were provided by Vigitel. Two models were conducted with PMM: (i) explanatory variables - city, sex, age in years, race/color, and schooling; (ii) explanatory variables - city, sex, and age in years. Weight and height were the outcome variables in the two models. PMM combines linear regression and random selection of the value for imputation. Linear prediction is used as a measure of distance between the missing value and the possible donors, thereby creating the virtual space with the candidate cases for yielding the value for imputation. One of the candidates from the pool is randomly selected, and its value is assigned to the missing unit. BMI was calculated by dividing weight in kilograms by height squared. The result shows the means and standard deviations for weight, height, and BMI according to imputation method and year. The estimates used the survey module from Stata, which considers the sampling effects. The mean values for weight, height, and BMI estimated by hot deck and PMM were similar. The results with the Vigitel data suggest the applicability of PMM to the set of health surveys.El objetivo de este estudio fue describir la estimación de medias de peso, altura e índice de masa corporal (IMC), según dos métodos de imputación, usando datos del Vigitel (Vigilancia de Factores de Riesgo y Protección para Enfermedades Crónicas No Transmisibles por Entrevista Telefónica). El diseño del estudio es transversal y se utilizaron datos secundarios de Vigitel, durante el período de 2006 a 2017. Los dos métodos para la imputación utilizados en el estudio fueron hot deck y Predictive Mean Matching (PMM). Las variables peso y altura imputadas por hot deck se recabaron de Vigitel. Se realizaron dos modelos con la utilización de la PMM: (i) variables explicativas -ciudad, sexo, edad en años, raza/color y escolaridad; (ii) variables explicativas -ciudad, sexo y edad en años. En los dos modelos, las variables peso y altura fueron las variables de desenlace. En la PMM, se combinan regresión lineal y selección aleatoria de valor para imputación. La predicción lineal es usada como medida de distancia entre el valor faltante y sus posibles donadores y, de este modo, se crea el espacio virtual con los casos candidatos de ceder su valor para la imputación. Uno de los candidatos del pool se selecciona aleatoriamente, y su valor es atribuido a la unidad faltante. El IMC se calculó mediante la división del peso en kilogramos por la altura al cuadrado. En los resultados, presentamos las medias y errores-patrón de peso, altura e IMC, según el método de imputación y año de seguimiento. En las estimaciones, se utilizó el módulo de encuesta del Stata, que considera los efectos de la muestra. Se observó que los valores medios de peso, altura e IMC estimados por hot deck y PMM son similares. Los resultados con los datos del Vigitel sugieren la aplicabilidad del PMM al conjunto de las investigaciones de salud.O objetivo deste estudo foi descrever a estimativa das médias de peso, altura e índice de massa corporal (IMC) segundo dois métodos de imputação, usando dados do Vigitel (Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico). O delineamento do estudo é transversal e utilizaram-se dados secundários do Vigitel do período de 2006 a 2017. Os dois métodos para imputação utilizados no estudo foram hot deck e Predictive Mean Matching (PMM). As variáveis peso e altura imputadas por hot deck foram disponibilizadas pelo Vigitel. Dois modelos foram conduzidos com a utilização da PMM: (i) variáveis explicativas - cidade, sexo, idade em anos, raça/cor e escolaridade; (ii) variáveis explicativas - cidade, sexo e idade em anos. Nos dois modelos, as variáveis peso e altura foram as variáveis de desfecho. Na PMM, combinam-se regressão linear e seleção aleatória de valor para imputação. A predição linear é usada como medida de distância entre o valor faltante e os seus possíveis doadores e, com isso, se cria o espaço virtual com os casos candidatos a ceder o valor para imputação. Um dos candidatos do pool é aleatoriamente selecionado, e o seu valor é atribuído à unidade faltante. O IMC foi calculado por meio da divisão do peso em quilogramas pela altura ao quadrado. Nos resultados, apresentamos as médias e erros-padrão de peso, altura e IMC, segundo método de imputação e ano de monitoramento. Nas estimativas, utilizou-se o módulo survey do Stata, que considera os efeitos da amostragem. Observou-se que os valores médios de peso, altura e IMC estimados por hot deck e PMM são similares. Os resultados com os dados do Vigitel sugerem a aplicabilidade do PMM ao conjunto dos inquéritos de saúde.Reports in Public HealthCadernos de Saúde Pública2020-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498Reports in Public Health; Vol. 36 No. 6 (2020): JuneCadernos de Saúde Pública; v. 36 n. 6 (2020): Junho1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZporhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498/16626https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498/16627Iolanda Karla Santana dos SantosWolney Lisbôa Condeinfo:eu-repo/semantics/openAccess2024-03-06T15:29:58Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/7498Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:08:37.479102Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true
dc.title.none.fl_str_mv Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
title Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
spellingShingle Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
Iolanda Karla Santana dos Santos
Inquéritos Nutricionais
Vigilância
Estado Nutricional
Epidemiologia
title_short Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
title_full Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
title_fullStr Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
title_full_unstemmed Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
title_sort Predictive Mean Matching como método de imputação alternativo ao hot deck no Vigitel
author Iolanda Karla Santana dos Santos
author_facet Iolanda Karla Santana dos Santos
Wolney Lisbôa Conde
author_role author
author2 Wolney Lisbôa Conde
author2_role author
dc.contributor.author.fl_str_mv Iolanda Karla Santana dos Santos
Wolney Lisbôa Conde
dc.subject.por.fl_str_mv Inquéritos Nutricionais
Vigilância
Estado Nutricional
Epidemiologia
topic Inquéritos Nutricionais
Vigilância
Estado Nutricional
Epidemiologia
description This study aimed to describe the estimated means for weight, height, and body mass index (BMI) according to two imputation methods, using data from Vigitel (Risk and Protective Factors Surveillance System for Chronic Non-Communicable Diseases Through Telephone Interview). This was a cross-sectional study that used secondary data from the Vigitel survey from 2006 to 2017. The two imputation methods used in the study were hot deck and Predictive Mean Matching (PMM). The weight and height variables imputed by hot deck were provided by Vigitel. Two models were conducted with PMM: (i) explanatory variables - city, sex, age in years, race/color, and schooling; (ii) explanatory variables - city, sex, and age in years. Weight and height were the outcome variables in the two models. PMM combines linear regression and random selection of the value for imputation. Linear prediction is used as a measure of distance between the missing value and the possible donors, thereby creating the virtual space with the candidate cases for yielding the value for imputation. One of the candidates from the pool is randomly selected, and its value is assigned to the missing unit. BMI was calculated by dividing weight in kilograms by height squared. The result shows the means and standard deviations for weight, height, and BMI according to imputation method and year. The estimates used the survey module from Stata, which considers the sampling effects. The mean values for weight, height, and BMI estimated by hot deck and PMM were similar. The results with the Vigitel data suggest the applicability of PMM to the set of health surveys.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498
url https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498/16626
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7498/16627
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
dc.source.none.fl_str_mv Reports in Public Health; Vol. 36 No. 6 (2020): June
Cadernos de Saúde Pública; v. 36 n. 6 (2020): Junho
1678-4464
0102-311X
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1798943392491634688