Ordinal logistic regression models: application in quality of life studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008001600010 |
Resumo: | Quality of life has been increasingly emphasized in public health research in recent years. Typically, the results of quality of life are measured by means of ordinal scales. In these situations, specific statistical methods are necessary because procedures such as either dichotomization or misinformation on the distribution of the outcome variable may complicate the inferential process. Ordinal logistic regression models are appropriate in many of these situations. This article presents a review of the proportional odds model, partial proportional odds model, continuation ratio model, and stereotype model. The fit, statistical inference, and comparisons between models are illustrated with data from a study on quality of life in 273 patients with schizophrenia. All tested models showed good fit, but the proportional odds or partial proportional odds models proved to be the best choice due to the nature of the data and ease of interpretation of the results. Ordinal logistic models perform differently depending on categorization of outcome, adequacy in relation to assumptions, goodness-of-fit, and parsimony. |
id |
FIOCRUZ-5_f62f244f179838b379857db6cb7b4d8e |
---|---|
oai_identifier_str |
oai:scielo:S0102-311X2008001600010 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Ordinal logistic regression models: application in quality of life studiesLogistic ModelsStatistical Methods and ProceduresQuality of LifeQuality of life has been increasingly emphasized in public health research in recent years. Typically, the results of quality of life are measured by means of ordinal scales. In these situations, specific statistical methods are necessary because procedures such as either dichotomization or misinformation on the distribution of the outcome variable may complicate the inferential process. Ordinal logistic regression models are appropriate in many of these situations. This article presents a review of the proportional odds model, partial proportional odds model, continuation ratio model, and stereotype model. The fit, statistical inference, and comparisons between models are illustrated with data from a study on quality of life in 273 patients with schizophrenia. All tested models showed good fit, but the proportional odds or partial proportional odds models proved to be the best choice due to the nature of the data and ease of interpretation of the results. Ordinal logistic models perform differently depending on categorization of outcome, adequacy in relation to assumptions, goodness-of-fit, and parsimony.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008001600010Cadernos de Saúde Pública v.24 suppl.4 2008reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/S0102-311X2008001600010info:eu-repo/semantics/openAccessAbreu,Mery Natali SilvaSiqueira,Arminda LuciaCardoso,Clareci SilvaCaiaffa,Waleska Teixeiraeng2008-09-02T00:00:00Zoai:scielo:S0102-311X2008001600010Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2008-09-02T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.none.fl_str_mv |
Ordinal logistic regression models: application in quality of life studies |
title |
Ordinal logistic regression models: application in quality of life studies |
spellingShingle |
Ordinal logistic regression models: application in quality of life studies Abreu,Mery Natali Silva Logistic Models Statistical Methods and Procedures Quality of Life |
title_short |
Ordinal logistic regression models: application in quality of life studies |
title_full |
Ordinal logistic regression models: application in quality of life studies |
title_fullStr |
Ordinal logistic regression models: application in quality of life studies |
title_full_unstemmed |
Ordinal logistic regression models: application in quality of life studies |
title_sort |
Ordinal logistic regression models: application in quality of life studies |
author |
Abreu,Mery Natali Silva |
author_facet |
Abreu,Mery Natali Silva Siqueira,Arminda Lucia Cardoso,Clareci Silva Caiaffa,Waleska Teixeira |
author_role |
author |
author2 |
Siqueira,Arminda Lucia Cardoso,Clareci Silva Caiaffa,Waleska Teixeira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Abreu,Mery Natali Silva Siqueira,Arminda Lucia Cardoso,Clareci Silva Caiaffa,Waleska Teixeira |
dc.subject.por.fl_str_mv |
Logistic Models Statistical Methods and Procedures Quality of Life |
topic |
Logistic Models Statistical Methods and Procedures Quality of Life |
description |
Quality of life has been increasingly emphasized in public health research in recent years. Typically, the results of quality of life are measured by means of ordinal scales. In these situations, specific statistical methods are necessary because procedures such as either dichotomization or misinformation on the distribution of the outcome variable may complicate the inferential process. Ordinal logistic regression models are appropriate in many of these situations. This article presents a review of the proportional odds model, partial proportional odds model, continuation ratio model, and stereotype model. The fit, statistical inference, and comparisons between models are illustrated with data from a study on quality of life in 273 patients with schizophrenia. All tested models showed good fit, but the proportional odds or partial proportional odds models proved to be the best choice due to the nature of the data and ease of interpretation of the results. Ordinal logistic models perform differently depending on categorization of outcome, adequacy in relation to assumptions, goodness-of-fit, and parsimony. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008001600010 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008001600010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0102-311X2008001600010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
dc.source.none.fl_str_mv |
Cadernos de Saúde Pública v.24 suppl.4 2008 reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1754115728612524032 |