Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978 |
Resumo: | In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package. |
id |
FIOCRUZ-5_91e4cad4eb4ad2e3977eac973b6238da |
---|---|
oai_identifier_str |
oai:ojs.teste-cadernos.ensp.fiocruz.br:article/5978 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studiesPrevalence RatioLogistic ModelsCross-Sectional StudiesIn the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.En las últimas décadas, se ha discutido el uso de la razón de prevalencia (RP), en lugar del odds ratio como medida de asociación que se estima en estudios transversales. Se analizan las principales dificultades en el uso de modelos estadísticos para el cálculo de la RP: problemas de convergencia, disponibilidad de herramientas y supuestos no apropiados. El objetivo es realizar un enfoque directo para estimar la RP desde modelos logísticos binarios, basados en dos métodos propuestos por Wilcosky y Chamblers y compararlos con otros métodos. Se han utilizado 3 ejemplos y comparamos las estimaciones crudas y ajustadas de RP con las estimaciones obtenidas por log-binomial, Poisson y odds ratio de prevalencia (ORP). Los RP obtenidos del enfoque directo dieron como resultado valores cercanos a los obtenidos mediante el log- binomial y de Poisson, mientras que la RCP sobreestimó la RP. El modelo que aquí se presenta implementó las siguientes ventajas: no presenta inestabilidad numérica, toma una distribución de probabilidad apropiada y está disponible en software estadístico libre R.Nas últimas décadas, tem sido discutido o uso da razão de prevalência (RP) ao invés da razão de chance como a medida de associação a ser estimada em estudos transversais. Discute-se as principais dificuldades no uso de modelos estatísticos para o cálculo da RP: problemas de convergência, disponibilidade de ferramentas e pressupostos não apropriados. O objetivo deste estudo é implementar uma abordagem direta para estimar a RP com base em modelos logísticos binários baseados em dois métodos propostos por Wilcosky & Chamblers, e comparar com outros métodos. Utilizou-se três exemplos e comparou-se as estimativas bruta e ajustada da RP obtidas pela função com as estimativas obtidas pelos modelos log-binomial, Poisson e razão de chance prevalente (RCP). As RP da abordagem proposta resultaram em valores próximos aos obtidos pelos modelos log-binomial e Poisson, e a RCP superestimou a RP. O modelo aqui implementado apresentou as seguintes vantagens: não apresenta instabilidade numérica; assume a distribuição de probabilidades adequada; e está disponível no programa estatístico R.Reports in Public HealthCadernos de Saúde Pública2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978Reports in Public Health; Vol. 31 No. 3 (2015): MarchCadernos de Saúde Pública; v. 31 n. 3 (2015): Março1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12552https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12553Leonardo Soares BastosRaquel de Vasconcellos Carvalhaes de OliveiraLuciane de Souza Velasqueinfo:eu-repo/semantics/openAccess2024-03-06T15:29:02Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/5978Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:06:49.634637Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true |
dc.title.none.fl_str_mv |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
spellingShingle |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies Leonardo Soares Bastos Prevalence Ratio Logistic Models Cross-Sectional Studies |
title_short |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_full |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_fullStr |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_full_unstemmed |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_sort |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
author |
Leonardo Soares Bastos |
author_facet |
Leonardo Soares Bastos Raquel de Vasconcellos Carvalhaes de Oliveira Luciane de Souza Velasque |
author_role |
author |
author2 |
Raquel de Vasconcellos Carvalhaes de Oliveira Luciane de Souza Velasque |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Leonardo Soares Bastos Raquel de Vasconcellos Carvalhaes de Oliveira Luciane de Souza Velasque |
dc.subject.por.fl_str_mv |
Prevalence Ratio Logistic Models Cross-Sectional Studies |
topic |
Prevalence Ratio Logistic Models Cross-Sectional Studies |
description |
In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978 |
url |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12552 https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12553 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
dc.source.none.fl_str_mv |
Reports in Public Health; Vol. 31 No. 3 (2015): March Cadernos de Saúde Pública; v. 31 n. 3 (2015): Março 1678-4464 0102-311X reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1816705372375744512 |