Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies

Detalhes bibliográficos
Autor(a) principal: Leonardo Soares Bastos
Data de Publicação: 2015
Outros Autores: Raquel de Vasconcellos Carvalhaes de Oliveira, Luciane de Souza Velasque
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978
Resumo: In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.
id FIOCRUZ-5_91e4cad4eb4ad2e3977eac973b6238da
oai_identifier_str oai:ojs.teste-cadernos.ensp.fiocruz.br:article/5978
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studiesPrevalence RatioLogistic ModelsCross-Sectional StudiesIn the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.En las últimas décadas, se ha discutido el uso de la razón de prevalencia (RP), en lugar del odds ratio como medida de asociación que se estima en estudios transversales. Se analizan las principales dificultades en el uso de modelos estadísticos para el cálculo de la RP: problemas de convergencia, disponibilidad de herramientas y supuestos no apropiados. El objetivo es realizar un enfoque directo para estimar la RP desde modelos logísticos binarios, basados en dos métodos propuestos por Wilcosky y Chamblers y compararlos con otros métodos. Se han utilizado 3 ejemplos y comparamos las estimaciones crudas y ajustadas de RP con las estimaciones obtenidas por log-binomial, Poisson y odds ratio de prevalencia (ORP). Los RP obtenidos del enfoque directo dieron como resultado valores cercanos a los obtenidos mediante el log- binomial y de Poisson, mientras que la RCP sobreestimó la RP. El modelo que aquí se presenta implementó las siguientes ventajas: no presenta inestabilidad numérica, toma una distribución de probabilidad apropiada y está disponible en software estadístico libre R.Nas últimas décadas, tem sido discutido o uso da razão de prevalência (RP) ao invés da razão de chance como a medida de associação a ser estimada em estudos transversais. Discute-se as principais dificuldades no uso de modelos estatísticos para o cálculo da RP: problemas de convergência, disponibilidade de ferramentas e pressupostos não apropriados. O objetivo deste estudo é implementar uma abordagem direta para estimar a RP com base em modelos logísticos binários baseados em dois métodos propostos por Wilcosky & Chamblers, e comparar com outros métodos. Utilizou-se três exemplos e comparou-se as estimativas bruta e ajustada da RP obtidas pela função com as estimativas obtidas pelos modelos log-binomial, Poisson e razão de chance prevalente (RCP). As RP da abordagem proposta resultaram em valores próximos aos obtidos pelos modelos log-binomial e Poisson, e a RCP superestimou a RP. O modelo aqui implementado apresentou as seguintes vantagens: não apresenta instabilidade numérica; assume a distribuição de probabilidades adequada; e está disponível no programa estatístico R.Reports in Public HealthCadernos de Saúde Pública2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978Reports in Public Health; Vol. 31 No. 3 (2015): MarchCadernos de Saúde Pública; v. 31 n. 3 (2015): Março1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12552https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12553Leonardo Soares BastosRaquel de Vasconcellos Carvalhaes de OliveiraLuciane de Souza Velasqueinfo:eu-repo/semantics/openAccess2024-03-06T15:29:02Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/5978Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:06:49.634637Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true
dc.title.none.fl_str_mv Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
spellingShingle Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
Leonardo Soares Bastos
Prevalence Ratio
Logistic Models
Cross-Sectional Studies
title_short Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_full Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_fullStr Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_full_unstemmed Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_sort Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
author Leonardo Soares Bastos
author_facet Leonardo Soares Bastos
Raquel de Vasconcellos Carvalhaes de Oliveira
Luciane de Souza Velasque
author_role author
author2 Raquel de Vasconcellos Carvalhaes de Oliveira
Luciane de Souza Velasque
author2_role author
author
dc.contributor.author.fl_str_mv Leonardo Soares Bastos
Raquel de Vasconcellos Carvalhaes de Oliveira
Luciane de Souza Velasque
dc.subject.por.fl_str_mv Prevalence Ratio
Logistic Models
Cross-Sectional Studies
topic Prevalence Ratio
Logistic Models
Cross-Sectional Studies
description In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978
url https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12552
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5978/12553
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
dc.source.none.fl_str_mv Reports in Public Health; Vol. 31 No. 3 (2015): March
Cadernos de Saúde Pública; v. 31 n. 3 (2015): Março
1678-4464
0102-311X
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1816705372375744512