Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies

Detalhes bibliográficos
Autor(a) principal: Bastos,Leonardo Soares
Data de Publicação: 2015
Outros Autores: Oliveira,Raquel de Vasconcellos Carvalhaes de, Velasque,Luciane de Souza
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487
Resumo: In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.
id FIOCRUZ-5_a7d9be3a8a109f91258829203b2f147e
oai_identifier_str oai:scielo:S0102-311X2015000300487
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studiesPrevalence RatioLogistic ModelsCross-Sectional StudiesIn the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487Cadernos de Saúde Pública v.31 n.3 2015reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/0102-311x00175413info:eu-repo/semantics/openAccessBastos,Leonardo SoaresOliveira,Raquel de Vasconcellos Carvalhaes deVelasque,Luciane de Souzaeng2016-11-25T00:00:00Zoai:scielo:S0102-311X2015000300487Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2016-11-25T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.none.fl_str_mv Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
spellingShingle Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
Bastos,Leonardo Soares
Prevalence Ratio
Logistic Models
Cross-Sectional Studies
title_short Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_full Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_fullStr Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_full_unstemmed Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
title_sort Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
author Bastos,Leonardo Soares
author_facet Bastos,Leonardo Soares
Oliveira,Raquel de Vasconcellos Carvalhaes de
Velasque,Luciane de Souza
author_role author
author2 Oliveira,Raquel de Vasconcellos Carvalhaes de
Velasque,Luciane de Souza
author2_role author
author
dc.contributor.author.fl_str_mv Bastos,Leonardo Soares
Oliveira,Raquel de Vasconcellos Carvalhaes de
Velasque,Luciane de Souza
dc.subject.por.fl_str_mv Prevalence Ratio
Logistic Models
Cross-Sectional Studies
topic Prevalence Ratio
Logistic Models
Cross-Sectional Studies
description In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0102-311x00175413
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
dc.source.none.fl_str_mv Cadernos de Saúde Pública v.31 n.3 2015
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1754115735386324992