Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487 |
Resumo: | In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package. |
id |
FIOCRUZ-5_a7d9be3a8a109f91258829203b2f147e |
---|---|
oai_identifier_str |
oai:scielo:S0102-311X2015000300487 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studiesPrevalence RatioLogistic ModelsCross-Sectional StudiesIn the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487Cadernos de Saúde Pública v.31 n.3 2015reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/0102-311x00175413info:eu-repo/semantics/openAccessBastos,Leonardo SoaresOliveira,Raquel de Vasconcellos Carvalhaes deVelasque,Luciane de Souzaeng2016-11-25T00:00:00Zoai:scielo:S0102-311X2015000300487Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2016-11-25T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.none.fl_str_mv |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
spellingShingle |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies Bastos,Leonardo Soares Prevalence Ratio Logistic Models Cross-Sectional Studies |
title_short |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_full |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_fullStr |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_full_unstemmed |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
title_sort |
Obtaining adjusted prevalence ratios from logistic regression models in cross-sectional studies |
author |
Bastos,Leonardo Soares |
author_facet |
Bastos,Leonardo Soares Oliveira,Raquel de Vasconcellos Carvalhaes de Velasque,Luciane de Souza |
author_role |
author |
author2 |
Oliveira,Raquel de Vasconcellos Carvalhaes de Velasque,Luciane de Souza |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Bastos,Leonardo Soares Oliveira,Raquel de Vasconcellos Carvalhaes de Velasque,Luciane de Souza |
dc.subject.por.fl_str_mv |
Prevalence Ratio Logistic Models Cross-Sectional Studies |
topic |
Prevalence Ratio Logistic Models Cross-Sectional Studies |
description |
In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015000300487 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0102-311x00175413 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
dc.source.none.fl_str_mv |
Cadernos de Saúde Pública v.31 n.3 2015 reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1754115735386324992 |