Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study

Detalhes bibliográficos
Autor(a) principal: Géssyca Cavalcante de Melo
Data de Publicação: 2020
Outros Autores: Renato Américo de Araújo Neto, Karina Conceição Gomes Machado de Araújo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495
Resumo: The COVID-19 death rate in Northeast Brazil is much higher when compared to the national average, demanding a study into the prognosis of the region for planning control measures and preventing the collapse of the health care system. We estimated the potential total cumulative cases of COVID-19 in the region for the next three months. Our study included all confirmed cases, from March 8 until April 28, 2020, collected from the official website that reports the situation of COVID-19 infections in Brazil. The Boltzmann function was applied to a data simulation for each set of data regarding different states. The model data were well fitted, with R2 values close to 0.999. Up to April 28, 20,665 cases were confirmed in the region. The state of Ceará has the highest rate of accumulated cases per 100,000 inhabitants (75.75), followed by Pernambuco. We estimated that the states of Ceará, Sergipe and Paraíba will experience a dramatic increase in the rate of cumulative cases until July 31. Maranhão, Pernambuco, Rio Grande do Norte and Piauí showed a more discreet increase in the model. For Bahia and Alagoas, a 4.7 and 6.6-fold increase in the rate was estimated, respectively. We estimate a substantial increase in the rate of cumulative cases per 100,000 inhabitants in the region within three months, especially for Ceará, Sergipe and Paraíba. The Boltzmann function proved to be a simple tool for epidemiological forecasting that can help planning the measures to contain COVID-19.
id FIOCRUZ-5_f9151aebcfa8f04548b261ffd253cef0
oai_identifier_str oai:ojs.teste-cadernos.ensp.fiocruz.br:article/7495
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling studyCOVID-19EpidemiologyMathematical ModelsPandemicThe COVID-19 death rate in Northeast Brazil is much higher when compared to the national average, demanding a study into the prognosis of the region for planning control measures and preventing the collapse of the health care system. We estimated the potential total cumulative cases of COVID-19 in the region for the next three months. Our study included all confirmed cases, from March 8 until April 28, 2020, collected from the official website that reports the situation of COVID-19 infections in Brazil. The Boltzmann function was applied to a data simulation for each set of data regarding different states. The model data were well fitted, with R2 values close to 0.999. Up to April 28, 20,665 cases were confirmed in the region. The state of Ceará has the highest rate of accumulated cases per 100,000 inhabitants (75.75), followed by Pernambuco. We estimated that the states of Ceará, Sergipe and Paraíba will experience a dramatic increase in the rate of cumulative cases until July 31. Maranhão, Pernambuco, Rio Grande do Norte and Piauí showed a more discreet increase in the model. For Bahia and Alagoas, a 4.7 and 6.6-fold increase in the rate was estimated, respectively. We estimate a substantial increase in the rate of cumulative cases per 100,000 inhabitants in the region within three months, especially for Ceará, Sergipe and Paraíba. The Boltzmann function proved to be a simple tool for epidemiological forecasting that can help planning the measures to contain COVID-19.La región del nordeste brasileño cuenta con una tasa de mortalidad mucho más alta debido a la COVID-19, si se compara con la media nacional, por lo que es necesario un estudio en la prognosis de la región para planificar medidas de control y prevenir el colapso del sistema de salud. Estimamos el potencial total acumulativo de casos de COVID-19 en esta región durante los próximos tres meses. El estudio incluyó todos los casos confirmados de COVID-19, desde el primer caso, confirmado el 8 de marzo, hasta el 28 de abril de 2020, recogido del sitio web oficial que informa la situación de las infecciones por COVID-19 en Brasil. La función de Boltzmann se aplicó a la simulación de datos para cada conjunto de datos, referentes a diferentes estados. El modelo de datos estuvo bien ajustado, con valores R2 cercanos a 0,999. Hasta el 28 de abril, se confirmaron 20.665 casos en la región. Ceará contó con la tasa más alta de incidencia acumulada por 100.000 habitantes (75,75), seguida de Pernambuco. Estimamos que Ceará, Sergipe y Paraíba sufrirán un dramático aumento en la tasa de incidencia acumulada de casos hasta el 31 de julio. Maranhão, Pernambuco, Rio Grande do Norte y Piauí mostraron un incremento más discreto en este modelo. En el caso de Bahía y Alagoas, se estimó un incremento de un 4,7 y 6,6, respectivamente. Estimamos un aumento sustancial en la tasa de incidencia acumulada de casos por 100.000 habitantes dentro de esta región, respecto a los tres próximos meses, especialmente en Ceará, Sergipe y Paraíba. La función de Boltzmann probó ser una herramienta simple para la previsión epidemiológica que puede ser de ayuda en la planificación de medidas para contener a la COVID-19.A Região Nordeste do Brasil tem uma taxa de letalidade muito mais elevada por COVID-19, comparado com a média nacional, o que exige uma investigação do prognóstico da região para o planejamento de medidas de controle e para prevenir o colapso do sistema de saúde. Estimamos o total potencial de casos acumulados de COVID-19 na região nos próximos três meses. O estudo incluiu todos os casos confirmados de COVID-19, desde o primeiro caso confirmado, em 8 de março, até 28 de abril de 2020, coletados no site oficial que relata a situação das infecções por COVID-19 no Brasil. A função de Boltzmann foi aplicada a uma simulação de dados para cada conjunto de dados dos diversos estados do Nordeste. Os dados do modelo mostraram bom ajuste, com valores de R2 próximos a 0,999. Até 28 de abril, haviam sido confirmados 20.665 casos na Região Nordeste. O estado do Ceará apresenta a maior taxa de casos acumulados por 100.000 habitantes (75,75), seguido pelo estado de Pernambuco. Estimamos que Ceará, Sergipe e Paraíba apresentarão um aumento dramático na taxa de casos acumulados até 31 de julho. Maranhão, Pernambuco, Rio Grande do Norte e Piauí mostraram aumentos mais discretos de acordo com o modelo. Para Bahia e Alagoas, foram estimados aumentos de 4,7 e 6,6 vezes nas taxas, respectivamente. Estimamos um aumento substancial na taxa de casos acumulados por 100.000 habitantes na Região Nordeste ao longo dos próximos três meses, especialmente no Ceará, Sergipe e Paraíba. A função de Boltzmann mostrou ser uma ferramenta simples para projeções epidemiológicas, podendo auxiliar no planejamento de medidas para conter a COVID-19.Reports in Public HealthCadernos de Saúde Pública2020-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495Reports in Public Health; Vol. 36 No. 6 (2020): JuneCadernos de Saúde Pública; v. 36 n. 6 (2020): Junho1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495/16618https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495/16619Géssyca Cavalcante de MeloRenato Américo de Araújo NetoKarina Conceição Gomes Machado de Araújoinfo:eu-repo/semantics/openAccess2024-03-06T15:29:58Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/7495Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:08:37.236530Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true
dc.title.none.fl_str_mv Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
title Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
spellingShingle Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
Géssyca Cavalcante de Melo
COVID-19
Epidemiology
Mathematical Models
Pandemic
title_short Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
title_full Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
title_fullStr Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
title_full_unstemmed Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
title_sort Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study
author Géssyca Cavalcante de Melo
author_facet Géssyca Cavalcante de Melo
Renato Américo de Araújo Neto
Karina Conceição Gomes Machado de Araújo
author_role author
author2 Renato Américo de Araújo Neto
Karina Conceição Gomes Machado de Araújo
author2_role author
author
dc.contributor.author.fl_str_mv Géssyca Cavalcante de Melo
Renato Américo de Araújo Neto
Karina Conceição Gomes Machado de Araújo
dc.subject.por.fl_str_mv COVID-19
Epidemiology
Mathematical Models
Pandemic
topic COVID-19
Epidemiology
Mathematical Models
Pandemic
description The COVID-19 death rate in Northeast Brazil is much higher when compared to the national average, demanding a study into the prognosis of the region for planning control measures and preventing the collapse of the health care system. We estimated the potential total cumulative cases of COVID-19 in the region for the next three months. Our study included all confirmed cases, from March 8 until April 28, 2020, collected from the official website that reports the situation of COVID-19 infections in Brazil. The Boltzmann function was applied to a data simulation for each set of data regarding different states. The model data were well fitted, with R2 values close to 0.999. Up to April 28, 20,665 cases were confirmed in the region. The state of Ceará has the highest rate of accumulated cases per 100,000 inhabitants (75.75), followed by Pernambuco. We estimated that the states of Ceará, Sergipe and Paraíba will experience a dramatic increase in the rate of cumulative cases until July 31. Maranhão, Pernambuco, Rio Grande do Norte and Piauí showed a more discreet increase in the model. For Bahia and Alagoas, a 4.7 and 6.6-fold increase in the rate was estimated, respectively. We estimate a substantial increase in the rate of cumulative cases per 100,000 inhabitants in the region within three months, especially for Ceará, Sergipe and Paraíba. The Boltzmann function proved to be a simple tool for epidemiological forecasting that can help planning the measures to contain COVID-19.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495
url https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495/16618
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/7495/16619
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
dc.source.none.fl_str_mv Reports in Public Health; Vol. 36 No. 6 (2020): June
Cadernos de Saúde Pública; v. 36 n. 6 (2020): Junho
1678-4464
0102-311X
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1798943392486391808