Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study

Detalhes bibliográficos
Autor(a) principal: Melo,Géssyca Cavalcante de
Data de Publicação: 2020
Outros Autores: Duprat,Irena Penha, Araújo,Karina Conceição Gomes Machado de, Fischer,Frida Marina, Araújo Neto,Renato Américo de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista brasileira de epidemiologia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2020000100205
Resumo: ABSTRACT: Objective: Estimating the potential number of COVID-19 deaths in Brazil for the coming months. Methods: The study included all confirmed cases of COVID-19 deaths, from the first confirmed death on March 17th to May 15th, 2020. These data were collected from an official Brazilian website of the Ministry of Health. The Boltzmann function was applied to a data simulation for each set of data regarding all states of the country. Results: The model data were well-fitted, with R2 values close to 0.999. Up to May 15th, 14,817 COVID-19 deaths have been confirmed in the country. Amazonas has the highest rate of accumulated cases per 1,000,000 inhabitants (321.14), followed by Ceará (161.63). Rio de Janeiro, Roraima, Amazonas, Pará, and Pernambuco are estimated to experience a substantial increase in the rate of cumulative cases until July 15th. Mato Grosso do Sul, Paraná, Minas Gerais, Rio Grande do Sul, and Santa Catarina will show lower rates per 1,000,000 inhabitants. Conclusion: We estimate a substantial increase in the rate of cumulative cases in Brazil over the next months. The Boltzmann function proved to be a simple tool for epidemiological forecasting that can assist in the planning of measures to contain COVID-19.
id ABRASCO-1_16addd0858894cea92bc89ba6af939ed
oai_identifier_str oai:scielo:S1415-790X2020000100205
network_acronym_str ABRASCO-1
network_name_str Revista brasileira de epidemiologia (Online)
repository_id_str
spelling Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling studyCoronavirus infectionsEpidemiologyMathematical modelingPandemicsBrazilABSTRACT: Objective: Estimating the potential number of COVID-19 deaths in Brazil for the coming months. Methods: The study included all confirmed cases of COVID-19 deaths, from the first confirmed death on March 17th to May 15th, 2020. These data were collected from an official Brazilian website of the Ministry of Health. The Boltzmann function was applied to a data simulation for each set of data regarding all states of the country. Results: The model data were well-fitted, with R2 values close to 0.999. Up to May 15th, 14,817 COVID-19 deaths have been confirmed in the country. Amazonas has the highest rate of accumulated cases per 1,000,000 inhabitants (321.14), followed by Ceará (161.63). Rio de Janeiro, Roraima, Amazonas, Pará, and Pernambuco are estimated to experience a substantial increase in the rate of cumulative cases until July 15th. Mato Grosso do Sul, Paraná, Minas Gerais, Rio Grande do Sul, and Santa Catarina will show lower rates per 1,000,000 inhabitants. Conclusion: We estimate a substantial increase in the rate of cumulative cases in Brazil over the next months. The Boltzmann function proved to be a simple tool for epidemiological forecasting that can assist in the planning of measures to contain COVID-19.Associação Brasileira de Saúde Coletiva2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2020000100205Revista Brasileira de Epidemiologia v.23 2020reponame:Revista brasileira de epidemiologia (Online)instname:Associação Brasileira de Saúde Coletiva (ABRASCO)instacron:ABRASCO10.1590/1980-549720200081info:eu-repo/semantics/openAccessMelo,Géssyca Cavalcante deDuprat,Irena PenhaAraújo,Karina Conceição Gomes Machado deFischer,Frida MarinaAraújo Neto,Renato Américo deeng2020-07-24T00:00:00Zoai:scielo:S1415-790X2020000100205Revistahttp://www.scielo.br/rbepidhttps://old.scielo.br/oai/scielo-oai.php||revbrepi@usp.br1980-54971415-790Xopendoar:2020-07-24T00:00Revista brasileira de epidemiologia (Online) - Associação Brasileira de Saúde Coletiva (ABRASCO)false
dc.title.none.fl_str_mv Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
title Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
spellingShingle Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
Melo,Géssyca Cavalcante de
Coronavirus infections
Epidemiology
Mathematical modeling
Pandemics
Brazil
title_short Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
title_full Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
title_fullStr Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
title_full_unstemmed Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
title_sort Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study
author Melo,Géssyca Cavalcante de
author_facet Melo,Géssyca Cavalcante de
Duprat,Irena Penha
Araújo,Karina Conceição Gomes Machado de
Fischer,Frida Marina
Araújo Neto,Renato Américo de
author_role author
author2 Duprat,Irena Penha
Araújo,Karina Conceição Gomes Machado de
Fischer,Frida Marina
Araújo Neto,Renato Américo de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Melo,Géssyca Cavalcante de
Duprat,Irena Penha
Araújo,Karina Conceição Gomes Machado de
Fischer,Frida Marina
Araújo Neto,Renato Américo de
dc.subject.por.fl_str_mv Coronavirus infections
Epidemiology
Mathematical modeling
Pandemics
Brazil
topic Coronavirus infections
Epidemiology
Mathematical modeling
Pandemics
Brazil
description ABSTRACT: Objective: Estimating the potential number of COVID-19 deaths in Brazil for the coming months. Methods: The study included all confirmed cases of COVID-19 deaths, from the first confirmed death on March 17th to May 15th, 2020. These data were collected from an official Brazilian website of the Ministry of Health. The Boltzmann function was applied to a data simulation for each set of data regarding all states of the country. Results: The model data were well-fitted, with R2 values close to 0.999. Up to May 15th, 14,817 COVID-19 deaths have been confirmed in the country. Amazonas has the highest rate of accumulated cases per 1,000,000 inhabitants (321.14), followed by Ceará (161.63). Rio de Janeiro, Roraima, Amazonas, Pará, and Pernambuco are estimated to experience a substantial increase in the rate of cumulative cases until July 15th. Mato Grosso do Sul, Paraná, Minas Gerais, Rio Grande do Sul, and Santa Catarina will show lower rates per 1,000,000 inhabitants. Conclusion: We estimate a substantial increase in the rate of cumulative cases in Brazil over the next months. The Boltzmann function proved to be a simple tool for epidemiological forecasting that can assist in the planning of measures to contain COVID-19.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2020000100205
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2020000100205
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-549720200081
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Saúde Coletiva
publisher.none.fl_str_mv Associação Brasileira de Saúde Coletiva
dc.source.none.fl_str_mv Revista Brasileira de Epidemiologia v.23 2020
reponame:Revista brasileira de epidemiologia (Online)
instname:Associação Brasileira de Saúde Coletiva (ABRASCO)
instacron:ABRASCO
instname_str Associação Brasileira de Saúde Coletiva (ABRASCO)
instacron_str ABRASCO
institution ABRASCO
reponame_str Revista brasileira de epidemiologia (Online)
collection Revista brasileira de epidemiologia (Online)
repository.name.fl_str_mv Revista brasileira de epidemiologia (Online) - Associação Brasileira de Saúde Coletiva (ABRASCO)
repository.mail.fl_str_mv ||revbrepi@usp.br
_version_ 1754212956249260032