Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems

Detalhes bibliográficos
Autor(a) principal: Rivas Ortiz, Iram Barbaro
Data de Publicação: 2023
Outros Autores: Marrero Iglesias, Susana, Souza Oliveira, Francisco Bruno, Ambrósio, Paulo Eduardo, Sanchez Dominguez, Dany
Tipo de documento: Artigo
Idioma: por
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/16440
Resumo: Radiative transfer and photon transport problems are frequently encountered in various fields of science and engineering, ranging from computerized tomography and radiotherapy to astrophysics, non-destructive testing of materials, radiological protection, among other domains. Challenges persist in this field, including the need for more accurate and comprehensive data, the incorporation of more realistic and complex geometries, and the development of efficient algorithms to solve the photon transport equation as a mathematical model. This work introduces approaches that employ response matrix techniques with low-order approximations to address problems related to photon transport. Specifically, the Response Matrix - Nodal Constant (RM-CN) and Response Matrix - Full Linear Nodal (RM-FLN) methods are presented, considering the isotropic phase function in Cartesian two-dimensional geometry, gray atmosphere, and the discrete ordinates (SN) formulation of the photon transport equation. The performance of the methods is evaluated in terms of accuracy by solving a model problem. Both response matrix methods generate accurate results for coarse spatial discretization grids, with the best results reported by the RM-FLN method. However, the computational cost is higher when compared to the RM-CN method for the same spatial discretization grid. Finally, the discrete ordinates formulation correctly models the wave effects generated between the absorbing regions of the problem, and ray effects are mitigated as the angular order of the formulation increases.
id FURG-7_9424db8b735b1b319828ca8b6d83cc54
oai_identifier_str oai:ojs.periodicos.furg.br:article/16440
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport ProblemsTécnicas de Matriz Resposta com Aproximações de Baixa Ordem Aplicadas a Problemas de Transporte de FótonsResponse Matrix Spectral Nodal MethodsDiscrete Ordinate FormulationRadiative TransferNuclear EngineeringComputational ModelingMétodos de Matriz Resposta Espectro NodalFormulação de Ordenadas DiscretasTransferência RadiativaEnganharia NuclearModelagem ComputacionalRadiative transfer and photon transport problems are frequently encountered in various fields of science and engineering, ranging from computerized tomography and radiotherapy to astrophysics, non-destructive testing of materials, radiological protection, among other domains. Challenges persist in this field, including the need for more accurate and comprehensive data, the incorporation of more realistic and complex geometries, and the development of efficient algorithms to solve the photon transport equation as a mathematical model. This work introduces approaches that employ response matrix techniques with low-order approximations to address problems related to photon transport. Specifically, the Response Matrix - Nodal Constant (RM-CN) and Response Matrix - Full Linear Nodal (RM-FLN) methods are presented, considering the isotropic phase function in Cartesian two-dimensional geometry, gray atmosphere, and the discrete ordinates (SN) formulation of the photon transport equation. The performance of the methods is evaluated in terms of accuracy by solving a model problem. Both response matrix methods generate accurate results for coarse spatial discretization grids, with the best results reported by the RM-FLN method. However, the computational cost is higher when compared to the RM-CN method for the same spatial discretization grid. Finally, the discrete ordinates formulation correctly models the wave effects generated between the absorbing regions of the problem, and ray effects are mitigated as the angular order of the formulation increases.Problemas relacionados à transferência radiativa e ao transporte de fótons são comumente encontrados em diversas disciplinas científicas e campos da engenharia, abrangendo desde a tomografia computadorizada e radioterapia até a astrofísica, testes não destrutivos de materiais e proteção radiológica, entre outras áreas. Ainda enfrentamos desafios nesse domínio, tais como a necessidade de dados nucleares mais precisos e abrangentes, a inclusão de geometrias realistas e complexas, e o desenvolvimento de algoritmos eficientes para resolver a equação de transporte de fótons como modelo matemático. Neste estudo, são introduzidas abordagens que empregam técnicas de matriz resposta com aproximações de baixa ordem para lidar com problemas relacionados ao transporte de fótons. Especificamente, são apresentados os métodos de Matriz Resposta - Constante Nodal (RM-CN) e Matriz Resposta - Nodal Linear Pleno (RM-FLN), considerando a função de fase isotrópica em geometria bidimensional Cartesiana, atmosfera cinza e formulação de ordenadas discretas (SN) da equação de transporte de fótons. Avaliamos o desempenho desses métodos em termos de precisão ao resolver um problema modelo. Ambos os métodos de matriz de resposta produzem resultados altamente precisos mesmo em grades de discretização espacial mais amplas, sendo que os resultados mais promissores foram obtidos com o método RM-FLN. No entanto, é importante observar que o custo computacional é mais elevado em comparação com o método RM-CN para a mesma grade de discretização espacial. Finalmente, a formulação de ordenadas discretas efetivamente modela os efeitos de onda gerados entre as regiões absorventes do problema, e os efeitos de raios são mitigados na medida que aumenta a ordem da quadratura angular.Universidade Federal do Rio Grande2023-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1644010.14295/vetor.v33i2.16440VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 24-31VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 24-312358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/16440/10461Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessRivas Ortiz, Iram BarbaroMarrero Iglesias, SusanaSouza Oliveira, Francisco BrunoAmbrósio, Paulo EduardoSanchez Dominguez, Dany2023-12-23T15:36:26Zoai:ojs.periodicos.furg.br:article/16440Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-12-23T15:36:26Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
Técnicas de Matriz Resposta com Aproximações de Baixa Ordem Aplicadas a Problemas de Transporte de Fótons
title Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
spellingShingle Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
Rivas Ortiz, Iram Barbaro
Response Matrix Spectral Nodal Methods
Discrete Ordinate Formulation
Radiative Transfer
Nuclear Engineering
Computational Modeling
Métodos de Matriz Resposta Espectro Nodal
Formulação de Ordenadas Discretas
Transferência Radiativa
Enganharia Nuclear
Modelagem Computacional
title_short Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
title_full Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
title_fullStr Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
title_full_unstemmed Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
title_sort Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
author Rivas Ortiz, Iram Barbaro
author_facet Rivas Ortiz, Iram Barbaro
Marrero Iglesias, Susana
Souza Oliveira, Francisco Bruno
Ambrósio, Paulo Eduardo
Sanchez Dominguez, Dany
author_role author
author2 Marrero Iglesias, Susana
Souza Oliveira, Francisco Bruno
Ambrósio, Paulo Eduardo
Sanchez Dominguez, Dany
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Rivas Ortiz, Iram Barbaro
Marrero Iglesias, Susana
Souza Oliveira, Francisco Bruno
Ambrósio, Paulo Eduardo
Sanchez Dominguez, Dany
dc.subject.por.fl_str_mv Response Matrix Spectral Nodal Methods
Discrete Ordinate Formulation
Radiative Transfer
Nuclear Engineering
Computational Modeling
Métodos de Matriz Resposta Espectro Nodal
Formulação de Ordenadas Discretas
Transferência Radiativa
Enganharia Nuclear
Modelagem Computacional
topic Response Matrix Spectral Nodal Methods
Discrete Ordinate Formulation
Radiative Transfer
Nuclear Engineering
Computational Modeling
Métodos de Matriz Resposta Espectro Nodal
Formulação de Ordenadas Discretas
Transferência Radiativa
Enganharia Nuclear
Modelagem Computacional
description Radiative transfer and photon transport problems are frequently encountered in various fields of science and engineering, ranging from computerized tomography and radiotherapy to astrophysics, non-destructive testing of materials, radiological protection, among other domains. Challenges persist in this field, including the need for more accurate and comprehensive data, the incorporation of more realistic and complex geometries, and the development of efficient algorithms to solve the photon transport equation as a mathematical model. This work introduces approaches that employ response matrix techniques with low-order approximations to address problems related to photon transport. Specifically, the Response Matrix - Nodal Constant (RM-CN) and Response Matrix - Full Linear Nodal (RM-FLN) methods are presented, considering the isotropic phase function in Cartesian two-dimensional geometry, gray atmosphere, and the discrete ordinates (SN) formulation of the photon transport equation. The performance of the methods is evaluated in terms of accuracy by solving a model problem. Both response matrix methods generate accurate results for coarse spatial discretization grids, with the best results reported by the RM-FLN method. However, the computational cost is higher when compared to the RM-CN method for the same spatial discretization grid. Finally, the discrete ordinates formulation correctly models the wave effects generated between the absorbing regions of the problem, and ray effects are mitigated as the angular order of the formulation increases.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/16440
10.14295/vetor.v33i2.16440
url https://periodicos.furg.br/vetor/article/view/16440
identifier_str_mv 10.14295/vetor.v33i2.16440
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/16440/10461
dc.rights.driver.fl_str_mv Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 24-31
VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 24-31
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041760301481984