Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/16440 |
Resumo: | Radiative transfer and photon transport problems are frequently encountered in various fields of science and engineering, ranging from computerized tomography and radiotherapy to astrophysics, non-destructive testing of materials, radiological protection, among other domains. Challenges persist in this field, including the need for more accurate and comprehensive data, the incorporation of more realistic and complex geometries, and the development of efficient algorithms to solve the photon transport equation as a mathematical model. This work introduces approaches that employ response matrix techniques with low-order approximations to address problems related to photon transport. Specifically, the Response Matrix - Nodal Constant (RM-CN) and Response Matrix - Full Linear Nodal (RM-FLN) methods are presented, considering the isotropic phase function in Cartesian two-dimensional geometry, gray atmosphere, and the discrete ordinates (SN) formulation of the photon transport equation. The performance of the methods is evaluated in terms of accuracy by solving a model problem. Both response matrix methods generate accurate results for coarse spatial discretization grids, with the best results reported by the RM-FLN method. However, the computational cost is higher when compared to the RM-CN method for the same spatial discretization grid. Finally, the discrete ordinates formulation correctly models the wave effects generated between the absorbing regions of the problem, and ray effects are mitigated as the angular order of the formulation increases. |
id |
FURG-7_9424db8b735b1b319828ca8b6d83cc54 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.furg.br:article/16440 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport ProblemsTécnicas de Matriz Resposta com Aproximações de Baixa Ordem Aplicadas a Problemas de Transporte de FótonsResponse Matrix Spectral Nodal MethodsDiscrete Ordinate FormulationRadiative TransferNuclear EngineeringComputational ModelingMétodos de Matriz Resposta Espectro NodalFormulação de Ordenadas DiscretasTransferência RadiativaEnganharia NuclearModelagem ComputacionalRadiative transfer and photon transport problems are frequently encountered in various fields of science and engineering, ranging from computerized tomography and radiotherapy to astrophysics, non-destructive testing of materials, radiological protection, among other domains. Challenges persist in this field, including the need for more accurate and comprehensive data, the incorporation of more realistic and complex geometries, and the development of efficient algorithms to solve the photon transport equation as a mathematical model. This work introduces approaches that employ response matrix techniques with low-order approximations to address problems related to photon transport. Specifically, the Response Matrix - Nodal Constant (RM-CN) and Response Matrix - Full Linear Nodal (RM-FLN) methods are presented, considering the isotropic phase function in Cartesian two-dimensional geometry, gray atmosphere, and the discrete ordinates (SN) formulation of the photon transport equation. The performance of the methods is evaluated in terms of accuracy by solving a model problem. Both response matrix methods generate accurate results for coarse spatial discretization grids, with the best results reported by the RM-FLN method. However, the computational cost is higher when compared to the RM-CN method for the same spatial discretization grid. Finally, the discrete ordinates formulation correctly models the wave effects generated between the absorbing regions of the problem, and ray effects are mitigated as the angular order of the formulation increases.Problemas relacionados à transferência radiativa e ao transporte de fótons são comumente encontrados em diversas disciplinas científicas e campos da engenharia, abrangendo desde a tomografia computadorizada e radioterapia até a astrofísica, testes não destrutivos de materiais e proteção radiológica, entre outras áreas. Ainda enfrentamos desafios nesse domínio, tais como a necessidade de dados nucleares mais precisos e abrangentes, a inclusão de geometrias realistas e complexas, e o desenvolvimento de algoritmos eficientes para resolver a equação de transporte de fótons como modelo matemático. Neste estudo, são introduzidas abordagens que empregam técnicas de matriz resposta com aproximações de baixa ordem para lidar com problemas relacionados ao transporte de fótons. Especificamente, são apresentados os métodos de Matriz Resposta - Constante Nodal (RM-CN) e Matriz Resposta - Nodal Linear Pleno (RM-FLN), considerando a função de fase isotrópica em geometria bidimensional Cartesiana, atmosfera cinza e formulação de ordenadas discretas (SN) da equação de transporte de fótons. Avaliamos o desempenho desses métodos em termos de precisão ao resolver um problema modelo. Ambos os métodos de matriz de resposta produzem resultados altamente precisos mesmo em grades de discretização espacial mais amplas, sendo que os resultados mais promissores foram obtidos com o método RM-FLN. No entanto, é importante observar que o custo computacional é mais elevado em comparação com o método RM-CN para a mesma grade de discretização espacial. Finalmente, a formulação de ordenadas discretas efetivamente modela os efeitos de onda gerados entre as regiões absorventes do problema, e os efeitos de raios são mitigados na medida que aumenta a ordem da quadratura angular.Universidade Federal do Rio Grande2023-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1644010.14295/vetor.v33i2.16440VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 24-31VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 24-312358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/16440/10461Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessRivas Ortiz, Iram BarbaroMarrero Iglesias, SusanaSouza Oliveira, Francisco BrunoAmbrósio, Paulo EduardoSanchez Dominguez, Dany2023-12-23T15:36:26Zoai:ojs.periodicos.furg.br:article/16440Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-12-23T15:36:26Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems Técnicas de Matriz Resposta com Aproximações de Baixa Ordem Aplicadas a Problemas de Transporte de Fótons |
title |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems |
spellingShingle |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems Rivas Ortiz, Iram Barbaro Response Matrix Spectral Nodal Methods Discrete Ordinate Formulation Radiative Transfer Nuclear Engineering Computational Modeling Métodos de Matriz Resposta Espectro Nodal Formulação de Ordenadas Discretas Transferência Radiativa Enganharia Nuclear Modelagem Computacional |
title_short |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems |
title_full |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems |
title_fullStr |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems |
title_full_unstemmed |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems |
title_sort |
Response Matrix Techniques with Low-Order Approximations Applied to Photon Transport Problems |
author |
Rivas Ortiz, Iram Barbaro |
author_facet |
Rivas Ortiz, Iram Barbaro Marrero Iglesias, Susana Souza Oliveira, Francisco Bruno Ambrósio, Paulo Eduardo Sanchez Dominguez, Dany |
author_role |
author |
author2 |
Marrero Iglesias, Susana Souza Oliveira, Francisco Bruno Ambrósio, Paulo Eduardo Sanchez Dominguez, Dany |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Rivas Ortiz, Iram Barbaro Marrero Iglesias, Susana Souza Oliveira, Francisco Bruno Ambrósio, Paulo Eduardo Sanchez Dominguez, Dany |
dc.subject.por.fl_str_mv |
Response Matrix Spectral Nodal Methods Discrete Ordinate Formulation Radiative Transfer Nuclear Engineering Computational Modeling Métodos de Matriz Resposta Espectro Nodal Formulação de Ordenadas Discretas Transferência Radiativa Enganharia Nuclear Modelagem Computacional |
topic |
Response Matrix Spectral Nodal Methods Discrete Ordinate Formulation Radiative Transfer Nuclear Engineering Computational Modeling Métodos de Matriz Resposta Espectro Nodal Formulação de Ordenadas Discretas Transferência Radiativa Enganharia Nuclear Modelagem Computacional |
description |
Radiative transfer and photon transport problems are frequently encountered in various fields of science and engineering, ranging from computerized tomography and radiotherapy to astrophysics, non-destructive testing of materials, radiological protection, among other domains. Challenges persist in this field, including the need for more accurate and comprehensive data, the incorporation of more realistic and complex geometries, and the development of efficient algorithms to solve the photon transport equation as a mathematical model. This work introduces approaches that employ response matrix techniques with low-order approximations to address problems related to photon transport. Specifically, the Response Matrix - Nodal Constant (RM-CN) and Response Matrix - Full Linear Nodal (RM-FLN) methods are presented, considering the isotropic phase function in Cartesian two-dimensional geometry, gray atmosphere, and the discrete ordinates (SN) formulation of the photon transport equation. The performance of the methods is evaluated in terms of accuracy by solving a model problem. Both response matrix methods generate accurate results for coarse spatial discretization grids, with the best results reported by the RM-FLN method. However, the computational cost is higher when compared to the RM-CN method for the same spatial discretization grid. Finally, the discrete ordinates formulation correctly models the wave effects generated between the absorbing regions of the problem, and ray effects are mitigated as the angular order of the formulation increases. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-23 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/16440 10.14295/vetor.v33i2.16440 |
url |
https://periodicos.furg.br/vetor/article/view/16440 |
identifier_str_mv |
10.14295/vetor.v33i2.16440 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/16440/10461 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 24-31 VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 24-31 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1797041760301481984 |