HISTORY OF NON-EUCLIDIAN GEOMETRY
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Scientia Generalis |
Texto Completo: | https://scientiageneralis.com.br/index.php/SG/article/view/v1n2a3 |
Resumo: | According to Euclidean geometry, the study conducted after the fifth postulate which stated that if a line, intercepting two others, forms internal angles on the same side whose sum is less than two lines, then these two lines, if infinitely extended, they are on that side whose sum of the internal angles is less than two straight lines. Therefore, this work was developed through the qualitative method through the literature review in an exploratory way about the history of non-Euclidean geometry. Based on readings from printed books, scientific articles, theses, monographs, magazine articles. The period of publication was preferably from sources dated between 2000 and 2016. The research was carried out between February and November 2016. |
id |
INDEP-1_02cb0a69947ef63d64d464dd83e2bddf |
---|---|
oai_identifier_str |
oai:ojs2.scientiageneralis.com.br:article/21 |
network_acronym_str |
INDEP-1 |
network_name_str |
Scientia Generalis |
repository_id_str |
|
spelling |
HISTORY OF NON-EUCLIDIAN GEOMETRYHISTÓRIA DA GEOMETRIA NÃO-EUCLIDIANANon-Euclidean geometryEuclidhyperbolicGeometria não euclidianaEuclideshiperbólicaAccording to Euclidean geometry, the study conducted after the fifth postulate which stated that if a line, intercepting two others, forms internal angles on the same side whose sum is less than two lines, then these two lines, if infinitely extended, they are on that side whose sum of the internal angles is less than two straight lines. Therefore, this work was developed through the qualitative method through the literature review in an exploratory way about the history of non-Euclidean geometry. Based on readings from printed books, scientific articles, theses, monographs, magazine articles. The period of publication was preferably from sources dated between 2000 and 2016. The research was carried out between February and November 2016.De acordo com os preceitos da geometria euclidiana o estudo dirigido após o quinto postulado o qual afirmava que, se uma reta, interceptando duas outras, forma ângulos internos de um mesmo lado cuja soma é menor que dois retos, então estas duas retas, se prolongadas infinitamente, encontram-se naquele lado cuja soma dos ângulos internos é menor que dois retos. Para tanto, este trabalho foi desenvolvido através do método qualitativo através da revisão de literatura de forma exploratória sobre a história da geometria não euclidiana, sobre o quinto postulado de Euclides e a importância da aplicação de tais conhecimentos na educação. Com base em leituras de livros impressos, artigos científicos, teses, monografias, artigos em revistas. O período das publicações foi preferencialmente por fontes datadas entre o ano de 2000 e 2016. A pesquisa foi realizada entre fevereiro a novembro de 2016.Scientia GeneralisScientia GeneralisScientia Generalis2020-03-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://scientiageneralis.com.br/index.php/SG/article/view/v1n2a3Scientia Generalis; v. 1 n. 2 (2020); 23-38Scientia Generalis; Vol. 1 No. 2 (2020); 23-38Scientia Generalis; Vol. 1 Núm. 2 (2020); 23-382675-2999reponame:Scientia Generalisinstname:Publicação independenteinstacron:INDEPporhttps://scientiageneralis.com.br/index.php/SG/article/view/v1n2a3/14Copyright (c) 2020 Adriano Ribeiro, Túlio Guimarãeshttps://creativecommons.org/licenses/by-sa/4.0info:eu-repo/semantics/openAccessRibeiro, Adriano Guimarães, Túlio 2023-08-01T03:31:58Zoai:ojs2.scientiageneralis.com.br:article/21Revistahttps://scientiageneralis.com.br/index.php/SGPRIhttps://scientiageneralis.com.br/index.php/SG/oaieditor@scientiageneralis.com.br2675-29992675-2999opendoar:2023-08-01T03:31:58Scientia Generalis - Publicação independentefalse |
dc.title.none.fl_str_mv |
HISTORY OF NON-EUCLIDIAN GEOMETRY HISTÓRIA DA GEOMETRIA NÃO-EUCLIDIANA |
title |
HISTORY OF NON-EUCLIDIAN GEOMETRY |
spellingShingle |
HISTORY OF NON-EUCLIDIAN GEOMETRY Ribeiro, Adriano Non-Euclidean geometry Euclid hyperbolic Geometria não euclidiana Euclides hiperbólica |
title_short |
HISTORY OF NON-EUCLIDIAN GEOMETRY |
title_full |
HISTORY OF NON-EUCLIDIAN GEOMETRY |
title_fullStr |
HISTORY OF NON-EUCLIDIAN GEOMETRY |
title_full_unstemmed |
HISTORY OF NON-EUCLIDIAN GEOMETRY |
title_sort |
HISTORY OF NON-EUCLIDIAN GEOMETRY |
author |
Ribeiro, Adriano |
author_facet |
Ribeiro, Adriano Guimarães, Túlio |
author_role |
author |
author2 |
Guimarães, Túlio |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ribeiro, Adriano Guimarães, Túlio |
dc.subject.por.fl_str_mv |
Non-Euclidean geometry Euclid hyperbolic Geometria não euclidiana Euclides hiperbólica |
topic |
Non-Euclidean geometry Euclid hyperbolic Geometria não euclidiana Euclides hiperbólica |
description |
According to Euclidean geometry, the study conducted after the fifth postulate which stated that if a line, intercepting two others, forms internal angles on the same side whose sum is less than two lines, then these two lines, if infinitely extended, they are on that side whose sum of the internal angles is less than two straight lines. Therefore, this work was developed through the qualitative method through the literature review in an exploratory way about the history of non-Euclidean geometry. Based on readings from printed books, scientific articles, theses, monographs, magazine articles. The period of publication was preferably from sources dated between 2000 and 2016. The research was carried out between February and November 2016. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://scientiageneralis.com.br/index.php/SG/article/view/v1n2a3 |
url |
https://scientiageneralis.com.br/index.php/SG/article/view/v1n2a3 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://scientiageneralis.com.br/index.php/SG/article/view/v1n2a3/14 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Adriano Ribeiro, Túlio Guimarães https://creativecommons.org/licenses/by-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Adriano Ribeiro, Túlio Guimarães https://creativecommons.org/licenses/by-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Scientia Generalis Scientia Generalis Scientia Generalis |
publisher.none.fl_str_mv |
Scientia Generalis Scientia Generalis Scientia Generalis |
dc.source.none.fl_str_mv |
Scientia Generalis; v. 1 n. 2 (2020); 23-38 Scientia Generalis; Vol. 1 No. 2 (2020); 23-38 Scientia Generalis; Vol. 1 Núm. 2 (2020); 23-38 2675-2999 reponame:Scientia Generalis instname:Publicação independente instacron:INDEP |
instname_str |
Publicação independente |
instacron_str |
INDEP |
institution |
INDEP |
reponame_str |
Scientia Generalis |
collection |
Scientia Generalis |
repository.name.fl_str_mv |
Scientia Generalis - Publicação independente |
repository.mail.fl_str_mv |
editor@scientiageneralis.com.br |
_version_ |
1797042483783270400 |