Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis

Detalhes bibliográficos
Autor(a) principal: Tonelli, Fernanda MP
Data de Publicação: 2017
Outros Autores: dos Santos NassifLacerda, Samyra Maria, Procópio, Marcela Santos, Lemos, Breno Luiz Sales, França, Luiz Renato de, Resende, Rodrigo Ribeiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do INPA
Texto Completo: https://repositorio.inpa.gov.br/handle/1/15219
Resumo: Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. © The Author(s) 2017.
id INPA-2_29dc23522e3200aa9729dd23b7fb6e68
oai_identifier_str oai:repositorio:1/15219
network_acronym_str INPA-2
network_name_str Repositório Institucional do INPA
repository_id_str
spelling Tonelli, Fernanda MPdos Santos NassifLacerda, Samyra MariaProcópio, Marcela SantosLemos, Breno Luiz SalesFrança, Luiz Renato deResende, Rodrigo Ribeiro2020-05-07T14:14:47Z2020-05-07T14:14:47Z2017https://repositorio.inpa.gov.br/handle/1/1521910.1038/srep44317Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. © The Author(s) 2017.Volume 7Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPhosphatidylinositol 3 KinaseAdult Stem CellAngiogenesisAnimalsCichlidCytologyDeficiencyFemaleGene Expression RegulationTransduction, GeneticGeneticsGerm CellGrowth, Development And AgingLarvaMaleMetabolismMicro-injectionMutationEmbryo, NonmammalianProceduresTransgenic AnimalsTransplantationVascularizationZygoteAdult Germline Stem CellsAnimalAnimal, Genetically ModifiedCichlidsEmbryo, NonmammalianFemaleGene Expression Regulation, DevelopmentalGerm CellsLarvaMaleMicroinjectionsMutationNeovascularization, PhysiologicPhosphatidylinositol 3-kinasesTransduction, GeneticZygoteGene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientific Reportsengreponame:Repositório Institucional do INPAinstname:Instituto Nacional de Pesquisas da Amazônia (INPA)instacron:INPAORIGINALartigo-inpa.pdfapplication/pdf3681839https://repositorio.inpa.gov.br/bitstream/1/15219/1/artigo-inpa.pdf9140b65f8169fdfa8706c26c5a8c4fcdMD51CC-LICENSElicense_rdfapplication/octet-stream914https://repositorio.inpa.gov.br/bitstream/1/15219/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD521/152192020-07-14 10:59:10.806oai:repositorio:1/15219Repositório de PublicaçõesPUBhttps://repositorio.inpa.gov.br/oai/requestopendoar:2020-07-14T14:59:10Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA)false
dc.title.en.fl_str_mv Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
title Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
spellingShingle Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
Tonelli, Fernanda MP
Phosphatidylinositol 3 Kinase
Adult Stem Cell
Angiogenesis
Animals
Cichlid
Cytology
Deficiency
Female
Gene Expression Regulation
Transduction, Genetic
Genetics
Germ Cell
Growth, Development And Aging
Larva
Male
Metabolism
Micro-injection
Mutation
Embryo, Nonmammalian
Procedures
Transgenic Animals
Transplantation
Vascularization
Zygote
Adult Germline Stem Cells
Animal
Animal, Genetically Modified
Cichlids
Embryo, Nonmammalian
Female
Gene Expression Regulation, Developmental
Germ Cells
Larva
Male
Microinjections
Mutation
Neovascularization, Physiologic
Phosphatidylinositol 3-kinases
Transduction, Genetic
Zygote
title_short Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
title_full Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
title_fullStr Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
title_full_unstemmed Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
title_sort Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis
author Tonelli, Fernanda MP
author_facet Tonelli, Fernanda MP
dos Santos NassifLacerda, Samyra Maria
Procópio, Marcela Santos
Lemos, Breno Luiz Sales
França, Luiz Renato de
Resende, Rodrigo Ribeiro
author_role author
author2 dos Santos NassifLacerda, Samyra Maria
Procópio, Marcela Santos
Lemos, Breno Luiz Sales
França, Luiz Renato de
Resende, Rodrigo Ribeiro
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Tonelli, Fernanda MP
dos Santos NassifLacerda, Samyra Maria
Procópio, Marcela Santos
Lemos, Breno Luiz Sales
França, Luiz Renato de
Resende, Rodrigo Ribeiro
dc.subject.eng.fl_str_mv Phosphatidylinositol 3 Kinase
Adult Stem Cell
Angiogenesis
Animals
Cichlid
Cytology
Deficiency
Female
Gene Expression Regulation
Transduction, Genetic
Genetics
Germ Cell
Growth, Development And Aging
Larva
Male
Metabolism
Micro-injection
Mutation
Embryo, Nonmammalian
Procedures
Transgenic Animals
Transplantation
Vascularization
Zygote
Adult Germline Stem Cells
Animal
Animal, Genetically Modified
Cichlids
Embryo, Nonmammalian
Female
Gene Expression Regulation, Developmental
Germ Cells
Larva
Male
Microinjections
Mutation
Neovascularization, Physiologic
Phosphatidylinositol 3-kinases
Transduction, Genetic
Zygote
topic Phosphatidylinositol 3 Kinase
Adult Stem Cell
Angiogenesis
Animals
Cichlid
Cytology
Deficiency
Female
Gene Expression Regulation
Transduction, Genetic
Genetics
Germ Cell
Growth, Development And Aging
Larva
Male
Metabolism
Micro-injection
Mutation
Embryo, Nonmammalian
Procedures
Transgenic Animals
Transplantation
Vascularization
Zygote
Adult Germline Stem Cells
Animal
Animal, Genetically Modified
Cichlids
Embryo, Nonmammalian
Female
Gene Expression Regulation, Developmental
Germ Cells
Larva
Male
Microinjections
Mutation
Neovascularization, Physiologic
Phosphatidylinositol 3-kinases
Transduction, Genetic
Zygote
description Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. © The Author(s) 2017.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2020-05-07T14:14:47Z
dc.date.available.fl_str_mv 2020-05-07T14:14:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.inpa.gov.br/handle/1/15219
dc.identifier.doi.none.fl_str_mv 10.1038/srep44317
url https://repositorio.inpa.gov.br/handle/1/15219
identifier_str_mv 10.1038/srep44317
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Volume 7
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Scientific Reports
publisher.none.fl_str_mv Scientific Reports
dc.source.none.fl_str_mv reponame:Repositório Institucional do INPA
instname:Instituto Nacional de Pesquisas da Amazônia (INPA)
instacron:INPA
instname_str Instituto Nacional de Pesquisas da Amazônia (INPA)
instacron_str INPA
institution INPA
reponame_str Repositório Institucional do INPA
collection Repositório Institucional do INPA
bitstream.url.fl_str_mv https://repositorio.inpa.gov.br/bitstream/1/15219/1/artigo-inpa.pdf
https://repositorio.inpa.gov.br/bitstream/1/15219/2/license_rdf
bitstream.checksum.fl_str_mv 9140b65f8169fdfa8706c26c5a8c4fcd
4d2950bda3d176f570a9f8b328dfbbef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional do INPA - Instituto Nacional de Pesquisas da Amazônia (INPA)
repository.mail.fl_str_mv
_version_ 1809928869753389056