Sistemas hamiltonianos ressonantes.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do ITA |
Texto Completo: | http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2684 |
Resumo: | Será analisado, neste trabalho, o problema de ressonância existente entre os corpos celestes, cujos períodos orbitais são comensuráveis na razão p:q, onde p e q são números inteiros positivos. O corpo central será considerado achatado e as excentricidades e inclinações serão quantidades pequenas e não-nulas. O sistema Hamiltoniano ressonante obtido abrange muitos casos que podem ocorrer em problemas de Mecânica Celeste.A análise do problema será feita considerando três classes particulares de sistema Hamiltoniano: sistema com ressonância do tipo excentricidade, sistema com ressonância do tipo inclinação e sistema com ressonância do tipo excentricidade e inclinação. A ressonância do tipo excentricidade é aquela que envolve a excentricidade e pericentro, enquanto que a ressonância do tipo inclinação envolve a inclinação e o nodo ascendente. Estes tipos de ressonâncias são observados no Sistema Solar, sendo que a do tipo excentricidade é a de maior ocorrência.As duas primeiras classes de sistemas Hamiltonianos serão analisadas incluindo o efeito do achatamento do corpo central, visando justificar algumas discrepâncias que existem em outros trabalhos que tratam deste assunto. Os sistemas são completamente integráveis e as soluções serão apresentadas. Em seguida, serão feitas aplicações para cada um dos casos.A última classe de sistema Hamiltoniano, onde são consideradas as ressonâncias do tipo excentricidade e inclinação não é trivialmente integrável e será feita uma análise qualitativa, cujo enfoque será estudar as famílias de órbitas periódicas triviais, obtidas a partir de duas integrais primeiras do sistema. Será analisada, também, a estabilidade linear dessas famílias de órbitas periódicas.A aplicação da teoria será feita para o par de planetas Netuno-Plutão. Esta aplicação visa determinar os valores das constantes de integração e estabelecer a localização destes pontos no plano das integrais primeiras. |
id |
ITA_ba31bb858ca2b11714b021b0e08cc4c7 |
---|---|
oai_identifier_str |
oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2684 |
network_acronym_str |
ITA |
network_name_str |
Biblioteca Digital de Teses e Dissertações do ITA |
spelling |
Sistemas hamiltonianos ressonantes.Sistemas hamiltonianosFreqüências ressonantesCorpos celestesElementos orbitaisMecânica celesteAstronomiaSerá analisado, neste trabalho, o problema de ressonância existente entre os corpos celestes, cujos períodos orbitais são comensuráveis na razão p:q, onde p e q são números inteiros positivos. O corpo central será considerado achatado e as excentricidades e inclinações serão quantidades pequenas e não-nulas. O sistema Hamiltoniano ressonante obtido abrange muitos casos que podem ocorrer em problemas de Mecânica Celeste.A análise do problema será feita considerando três classes particulares de sistema Hamiltoniano: sistema com ressonância do tipo excentricidade, sistema com ressonância do tipo inclinação e sistema com ressonância do tipo excentricidade e inclinação. A ressonância do tipo excentricidade é aquela que envolve a excentricidade e pericentro, enquanto que a ressonância do tipo inclinação envolve a inclinação e o nodo ascendente. Estes tipos de ressonâncias são observados no Sistema Solar, sendo que a do tipo excentricidade é a de maior ocorrência.As duas primeiras classes de sistemas Hamiltonianos serão analisadas incluindo o efeito do achatamento do corpo central, visando justificar algumas discrepâncias que existem em outros trabalhos que tratam deste assunto. Os sistemas são completamente integráveis e as soluções serão apresentadas. Em seguida, serão feitas aplicações para cada um dos casos.A última classe de sistema Hamiltoniano, onde são consideradas as ressonâncias do tipo excentricidade e inclinação não é trivialmente integrável e será feita uma análise qualitativa, cujo enfoque será estudar as famílias de órbitas periódicas triviais, obtidas a partir de duas integrais primeiras do sistema. Será analisada, também, a estabilidade linear dessas famílias de órbitas periódicas.A aplicação da teoria será feita para o par de planetas Netuno-Plutão. Esta aplicação visa determinar os valores das constantes de integração e estabelecer a localização destes pontos no plano das integrais primeiras.Instituto Tecnológico de AeronáuticaSandro da Silva FernandesWagner SessinMarisa Atsuko Nitto2000-00-00info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2684reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:54Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2684http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:39:49.885Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue |
dc.title.none.fl_str_mv |
Sistemas hamiltonianos ressonantes. |
title |
Sistemas hamiltonianos ressonantes. |
spellingShingle |
Sistemas hamiltonianos ressonantes. Marisa Atsuko Nitto Sistemas hamiltonianos Freqüências ressonantes Corpos celestes Elementos orbitais Mecânica celeste Astronomia |
title_short |
Sistemas hamiltonianos ressonantes. |
title_full |
Sistemas hamiltonianos ressonantes. |
title_fullStr |
Sistemas hamiltonianos ressonantes. |
title_full_unstemmed |
Sistemas hamiltonianos ressonantes. |
title_sort |
Sistemas hamiltonianos ressonantes. |
author |
Marisa Atsuko Nitto |
author_facet |
Marisa Atsuko Nitto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sandro da Silva Fernandes Wagner Sessin |
dc.contributor.author.fl_str_mv |
Marisa Atsuko Nitto |
dc.subject.por.fl_str_mv |
Sistemas hamiltonianos Freqüências ressonantes Corpos celestes Elementos orbitais Mecânica celeste Astronomia |
topic |
Sistemas hamiltonianos Freqüências ressonantes Corpos celestes Elementos orbitais Mecânica celeste Astronomia |
dc.description.none.fl_txt_mv |
Será analisado, neste trabalho, o problema de ressonância existente entre os corpos celestes, cujos períodos orbitais são comensuráveis na razão p:q, onde p e q são números inteiros positivos. O corpo central será considerado achatado e as excentricidades e inclinações serão quantidades pequenas e não-nulas. O sistema Hamiltoniano ressonante obtido abrange muitos casos que podem ocorrer em problemas de Mecânica Celeste.A análise do problema será feita considerando três classes particulares de sistema Hamiltoniano: sistema com ressonância do tipo excentricidade, sistema com ressonância do tipo inclinação e sistema com ressonância do tipo excentricidade e inclinação. A ressonância do tipo excentricidade é aquela que envolve a excentricidade e pericentro, enquanto que a ressonância do tipo inclinação envolve a inclinação e o nodo ascendente. Estes tipos de ressonâncias são observados no Sistema Solar, sendo que a do tipo excentricidade é a de maior ocorrência.As duas primeiras classes de sistemas Hamiltonianos serão analisadas incluindo o efeito do achatamento do corpo central, visando justificar algumas discrepâncias que existem em outros trabalhos que tratam deste assunto. Os sistemas são completamente integráveis e as soluções serão apresentadas. Em seguida, serão feitas aplicações para cada um dos casos.A última classe de sistema Hamiltoniano, onde são consideradas as ressonâncias do tipo excentricidade e inclinação não é trivialmente integrável e será feita uma análise qualitativa, cujo enfoque será estudar as famílias de órbitas periódicas triviais, obtidas a partir de duas integrais primeiras do sistema. Será analisada, também, a estabilidade linear dessas famílias de órbitas periódicas.A aplicação da teoria será feita para o par de planetas Netuno-Plutão. Esta aplicação visa determinar os valores das constantes de integração e estabelecer a localização destes pontos no plano das integrais primeiras. |
description |
Será analisado, neste trabalho, o problema de ressonância existente entre os corpos celestes, cujos períodos orbitais são comensuráveis na razão p:q, onde p e q são números inteiros positivos. O corpo central será considerado achatado e as excentricidades e inclinações serão quantidades pequenas e não-nulas. O sistema Hamiltoniano ressonante obtido abrange muitos casos que podem ocorrer em problemas de Mecânica Celeste.A análise do problema será feita considerando três classes particulares de sistema Hamiltoniano: sistema com ressonância do tipo excentricidade, sistema com ressonância do tipo inclinação e sistema com ressonância do tipo excentricidade e inclinação. A ressonância do tipo excentricidade é aquela que envolve a excentricidade e pericentro, enquanto que a ressonância do tipo inclinação envolve a inclinação e o nodo ascendente. Estes tipos de ressonâncias são observados no Sistema Solar, sendo que a do tipo excentricidade é a de maior ocorrência.As duas primeiras classes de sistemas Hamiltonianos serão analisadas incluindo o efeito do achatamento do corpo central, visando justificar algumas discrepâncias que existem em outros trabalhos que tratam deste assunto. Os sistemas são completamente integráveis e as soluções serão apresentadas. Em seguida, serão feitas aplicações para cada um dos casos.A última classe de sistema Hamiltoniano, onde são consideradas as ressonâncias do tipo excentricidade e inclinação não é trivialmente integrável e será feita uma análise qualitativa, cujo enfoque será estudar as famílias de órbitas periódicas triviais, obtidas a partir de duas integrais primeiras do sistema. Será analisada, também, a estabilidade linear dessas famílias de órbitas periódicas.A aplicação da teoria será feita para o par de planetas Netuno-Plutão. Esta aplicação visa determinar os valores das constantes de integração e estabelecer a localização destes pontos no plano das integrais primeiras. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-00-00 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2684 |
url |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2684 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do ITA instname:Instituto Tecnológico de Aeronáutica instacron:ITA |
reponame_str |
Biblioteca Digital de Teses e Dissertações do ITA |
collection |
Biblioteca Digital de Teses e Dissertações do ITA |
instname_str |
Instituto Tecnológico de Aeronáutica |
instacron_str |
ITA |
institution |
ITA |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica |
repository.mail.fl_str_mv |
|
subject_por_txtF_mv |
Sistemas hamiltonianos Freqüências ressonantes Corpos celestes Elementos orbitais Mecânica celeste Astronomia |
_version_ |
1706809289123823616 |