Multispecies Purification of Testicular Germ Cells

Detalhes bibliográficos
Autor(a) principal: Lima, AC
Data de Publicação: 2016
Outros Autores: Jung, M, Rusch, J, Usmani, A, Lopes, A, Conrad, DF
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10216/114483
Resumo: Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.
id RCAP_00ed5f2406dbabba2983f2b6b7e4a6d2
oai_identifier_str oai:repositorio-aberto.up.pt:10216/114483
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multispecies Purification of Testicular Germ CellsComparative reproductionFACSHoechst 33342SpermatogenesisTestisAdvanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.Society for the Study of Reproduction20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10216/114483eng0006-336310.1095/biolreprod.116.140566Lima, ACJung, MRusch, JUsmani, ALopes, AConrad, DFinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:10:30Zoai:repositorio-aberto.up.pt:10216/114483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:35:05.126705Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multispecies Purification of Testicular Germ Cells
title Multispecies Purification of Testicular Germ Cells
spellingShingle Multispecies Purification of Testicular Germ Cells
Lima, AC
Comparative reproduction
FACS
Hoechst 33342
Spermatogenesis
Testis
title_short Multispecies Purification of Testicular Germ Cells
title_full Multispecies Purification of Testicular Germ Cells
title_fullStr Multispecies Purification of Testicular Germ Cells
title_full_unstemmed Multispecies Purification of Testicular Germ Cells
title_sort Multispecies Purification of Testicular Germ Cells
author Lima, AC
author_facet Lima, AC
Jung, M
Rusch, J
Usmani, A
Lopes, A
Conrad, DF
author_role author
author2 Jung, M
Rusch, J
Usmani, A
Lopes, A
Conrad, DF
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Lima, AC
Jung, M
Rusch, J
Usmani, A
Lopes, A
Conrad, DF
dc.subject.por.fl_str_mv Comparative reproduction
FACS
Hoechst 33342
Spermatogenesis
Testis
topic Comparative reproduction
FACS
Hoechst 33342
Spermatogenesis
Testis
description Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10216/114483
url http://hdl.handle.net/10216/114483
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0006-3363
10.1095/biolreprod.116.140566
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Society for the Study of Reproduction
publisher.none.fl_str_mv Society for the Study of Reproduction
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135662504411136