Investigating detrended fluctuation analysis with structural breaks

Detalhes bibliográficos
Autor(a) principal: Menezes, R.
Data de Publicação: 2019
Outros Autores: Oliveira, A., Portela, S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/17410
Resumo: Detrended Fluctuation Analysis has been used in several fields of science to study the statistical properties of trend stationary and nonstationary time-series. Its application to financial data has produced important results concerning long-range correlations and long-memory. However, these results may be contaminated if the researcher attributes to nonstationary trends the effect of stationary trends with endogenous structural breaks. Our paper proposes a modified DFA model where boxes to determine local trends are replaced by endogenous structural break windows. We also allow local trends fitted by quadratic functions and use squared residuals in place of patchy standard deviations to study the magnitude of the power-law exponent. The results show that our modified DFA model performs better than the fixed length alternatives originally proposed, and is, therefore, a suitable model to fit with financial data. Consistently with previous findings, our results show positive long-range correlation in all indices with the higher value for emerging markets.
id RCAP_016cdd38d714507ab519d159df4e3d82
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/17410
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Investigating detrended fluctuation analysis with structural breaksDetrended fluctuation analysisDetrended walkStructural breakForecast accuracyPower-lawDetrended Fluctuation Analysis has been used in several fields of science to study the statistical properties of trend stationary and nonstationary time-series. Its application to financial data has produced important results concerning long-range correlations and long-memory. However, these results may be contaminated if the researcher attributes to nonstationary trends the effect of stationary trends with endogenous structural breaks. Our paper proposes a modified DFA model where boxes to determine local trends are replaced by endogenous structural break windows. We also allow local trends fitted by quadratic functions and use squared residuals in place of patchy standard deviations to study the magnitude of the power-law exponent. The results show that our modified DFA model performs better than the fixed length alternatives originally proposed, and is, therefore, a suitable model to fit with financial data. Consistently with previous findings, our results show positive long-range correlation in all indices with the higher value for emerging markets.Elsevier2019-02-23T15:55:02Z2020-02-23T00:00:00Z2019-01-01T00:00:00Z20192019-02-23T15:53:52Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/17410eng0378-437110.1016/j.physa.2018.12.006Menezes, R.Oliveira, A.Portela, S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T18:00:36Zoai:repositorio.iscte-iul.pt:10071/17410Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:32:09.443767Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Investigating detrended fluctuation analysis with structural breaks
title Investigating detrended fluctuation analysis with structural breaks
spellingShingle Investigating detrended fluctuation analysis with structural breaks
Menezes, R.
Detrended fluctuation analysis
Detrended walk
Structural break
Forecast accuracy
Power-law
title_short Investigating detrended fluctuation analysis with structural breaks
title_full Investigating detrended fluctuation analysis with structural breaks
title_fullStr Investigating detrended fluctuation analysis with structural breaks
title_full_unstemmed Investigating detrended fluctuation analysis with structural breaks
title_sort Investigating detrended fluctuation analysis with structural breaks
author Menezes, R.
author_facet Menezes, R.
Oliveira, A.
Portela, S.
author_role author
author2 Oliveira, A.
Portela, S.
author2_role author
author
dc.contributor.author.fl_str_mv Menezes, R.
Oliveira, A.
Portela, S.
dc.subject.por.fl_str_mv Detrended fluctuation analysis
Detrended walk
Structural break
Forecast accuracy
Power-law
topic Detrended fluctuation analysis
Detrended walk
Structural break
Forecast accuracy
Power-law
description Detrended Fluctuation Analysis has been used in several fields of science to study the statistical properties of trend stationary and nonstationary time-series. Its application to financial data has produced important results concerning long-range correlations and long-memory. However, these results may be contaminated if the researcher attributes to nonstationary trends the effect of stationary trends with endogenous structural breaks. Our paper proposes a modified DFA model where boxes to determine local trends are replaced by endogenous structural break windows. We also allow local trends fitted by quadratic functions and use squared residuals in place of patchy standard deviations to study the magnitude of the power-law exponent. The results show that our modified DFA model performs better than the fixed length alternatives originally proposed, and is, therefore, a suitable model to fit with financial data. Consistently with previous findings, our results show positive long-range correlation in all indices with the higher value for emerging markets.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-23T15:55:02Z
2019-01-01T00:00:00Z
2019
2019-02-23T15:53:52Z
2020-02-23T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/17410
url http://hdl.handle.net/10071/17410
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0378-4371
10.1016/j.physa.2018.12.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134883199582208