Investigating detrended fluctuation analysis with structural breaks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/17410 |
Resumo: | Detrended Fluctuation Analysis has been used in several fields of science to study the statistical properties of trend stationary and nonstationary time-series. Its application to financial data has produced important results concerning long-range correlations and long-memory. However, these results may be contaminated if the researcher attributes to nonstationary trends the effect of stationary trends with endogenous structural breaks. Our paper proposes a modified DFA model where boxes to determine local trends are replaced by endogenous structural break windows. We also allow local trends fitted by quadratic functions and use squared residuals in place of patchy standard deviations to study the magnitude of the power-law exponent. The results show that our modified DFA model performs better than the fixed length alternatives originally proposed, and is, therefore, a suitable model to fit with financial data. Consistently with previous findings, our results show positive long-range correlation in all indices with the higher value for emerging markets. |
id |
RCAP_016cdd38d714507ab519d159df4e3d82 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/17410 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Investigating detrended fluctuation analysis with structural breaksDetrended fluctuation analysisDetrended walkStructural breakForecast accuracyPower-lawDetrended Fluctuation Analysis has been used in several fields of science to study the statistical properties of trend stationary and nonstationary time-series. Its application to financial data has produced important results concerning long-range correlations and long-memory. However, these results may be contaminated if the researcher attributes to nonstationary trends the effect of stationary trends with endogenous structural breaks. Our paper proposes a modified DFA model where boxes to determine local trends are replaced by endogenous structural break windows. We also allow local trends fitted by quadratic functions and use squared residuals in place of patchy standard deviations to study the magnitude of the power-law exponent. The results show that our modified DFA model performs better than the fixed length alternatives originally proposed, and is, therefore, a suitable model to fit with financial data. Consistently with previous findings, our results show positive long-range correlation in all indices with the higher value for emerging markets.Elsevier2019-02-23T15:55:02Z2020-02-23T00:00:00Z2019-01-01T00:00:00Z20192019-02-23T15:53:52Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/17410eng0378-437110.1016/j.physa.2018.12.006Menezes, R.Oliveira, A.Portela, S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T18:00:36Zoai:repositorio.iscte-iul.pt:10071/17410Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:32:09.443767Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Investigating detrended fluctuation analysis with structural breaks |
title |
Investigating detrended fluctuation analysis with structural breaks |
spellingShingle |
Investigating detrended fluctuation analysis with structural breaks Menezes, R. Detrended fluctuation analysis Detrended walk Structural break Forecast accuracy Power-law |
title_short |
Investigating detrended fluctuation analysis with structural breaks |
title_full |
Investigating detrended fluctuation analysis with structural breaks |
title_fullStr |
Investigating detrended fluctuation analysis with structural breaks |
title_full_unstemmed |
Investigating detrended fluctuation analysis with structural breaks |
title_sort |
Investigating detrended fluctuation analysis with structural breaks |
author |
Menezes, R. |
author_facet |
Menezes, R. Oliveira, A. Portela, S. |
author_role |
author |
author2 |
Oliveira, A. Portela, S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Menezes, R. Oliveira, A. Portela, S. |
dc.subject.por.fl_str_mv |
Detrended fluctuation analysis Detrended walk Structural break Forecast accuracy Power-law |
topic |
Detrended fluctuation analysis Detrended walk Structural break Forecast accuracy Power-law |
description |
Detrended Fluctuation Analysis has been used in several fields of science to study the statistical properties of trend stationary and nonstationary time-series. Its application to financial data has produced important results concerning long-range correlations and long-memory. However, these results may be contaminated if the researcher attributes to nonstationary trends the effect of stationary trends with endogenous structural breaks. Our paper proposes a modified DFA model where boxes to determine local trends are replaced by endogenous structural break windows. We also allow local trends fitted by quadratic functions and use squared residuals in place of patchy standard deviations to study the magnitude of the power-law exponent. The results show that our modified DFA model performs better than the fixed length alternatives originally proposed, and is, therefore, a suitable model to fit with financial data. Consistently with previous findings, our results show positive long-range correlation in all indices with the higher value for emerging markets. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-23T15:55:02Z 2019-01-01T00:00:00Z 2019 2019-02-23T15:53:52Z 2020-02-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/17410 |
url |
http://hdl.handle.net/10071/17410 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0378-4371 10.1016/j.physa.2018.12.006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134883199582208 |