Statistical properties of detrended fluctuation analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/27672 |
Resumo: | The main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E. 49(5) (1994), 1685–1689]. This is a wellknown method for analysing the long-range dependence in non-stationary time series. Here we describe the DFA method and we prove its consistency and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional parameter d. In the literature it is well established that the nucleotide sequences present long-range dependence property. In this work, we analyse the long dependence property in view of the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the semiparametric regression method based on the periodogram function, in both classical and robust versions; the semiparametric R/S(n) method, proposed by Hurst [Long term storage in reservoirs, Trans. Am. Soc. Civil Eng. 116 (1986), 770–779] and the maximum likelihood method (see [R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986), 517–532]), by considering the approximation suggested by Whittle [Hypothesis Testing in Time Series Analysis (1953), Hafner, New York].. |
id |
RCAP_d00decf51629cd0addfcd2e8cfb856d5 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/27672 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Statistical properties of detrended fluctuation analysisLong MemoryDetrended Fluctuation AnalysisSemiparametric EstimationRobustnessThe main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E. 49(5) (1994), 1685–1689]. This is a wellknown method for analysing the long-range dependence in non-stationary time series. Here we describe the DFA method and we prove its consistency and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional parameter d. In the literature it is well established that the nucleotide sequences present long-range dependence property. In this work, we analyse the long dependence property in view of the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the semiparametric regression method based on the periodogram function, in both classical and robust versions; the semiparametric R/S(n) method, proposed by Hurst [Long term storage in reservoirs, Trans. Am. Soc. Civil Eng. 116 (1986), 770–779] and the maximum likelihood method (see [R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986), 517–532]), by considering the approximation suggested by Whittle [Hypothesis Testing in Time Series Analysis (1953), Hafner, New York]..Taylor & FrancisRepositório da Universidade de LisboaCrato, NunoLinhares, R.R.Lopes, Sílvia R. C.2023-04-28T10:51:11Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/27672engCrato, Nuno; R.R. Linhares and Sílvia R. C. Lopes .(2010). “Statistical properties of detrended fluctuation analysis”. Journal of Statistical Computation and Simulation, Vol. 80, No. 6: pp. 625-641. (Search PDF in 2023).1563-5163 (Online)10.1080/00949650902755152info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-30T01:30:56Zoai:www.repository.utl.pt:10400.5/27672Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:50:28.959218Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Statistical properties of detrended fluctuation analysis |
title |
Statistical properties of detrended fluctuation analysis |
spellingShingle |
Statistical properties of detrended fluctuation analysis Crato, Nuno Long Memory Detrended Fluctuation Analysis Semiparametric Estimation Robustness |
title_short |
Statistical properties of detrended fluctuation analysis |
title_full |
Statistical properties of detrended fluctuation analysis |
title_fullStr |
Statistical properties of detrended fluctuation analysis |
title_full_unstemmed |
Statistical properties of detrended fluctuation analysis |
title_sort |
Statistical properties of detrended fluctuation analysis |
author |
Crato, Nuno |
author_facet |
Crato, Nuno Linhares, R.R. Lopes, Sílvia R. C. |
author_role |
author |
author2 |
Linhares, R.R. Lopes, Sílvia R. C. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Crato, Nuno Linhares, R.R. Lopes, Sílvia R. C. |
dc.subject.por.fl_str_mv |
Long Memory Detrended Fluctuation Analysis Semiparametric Estimation Robustness |
topic |
Long Memory Detrended Fluctuation Analysis Semiparametric Estimation Robustness |
description |
The main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E. 49(5) (1994), 1685–1689]. This is a wellknown method for analysing the long-range dependence in non-stationary time series. Here we describe the DFA method and we prove its consistency and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional parameter d. In the literature it is well established that the nucleotide sequences present long-range dependence property. In this work, we analyse the long dependence property in view of the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the semiparametric regression method based on the periodogram function, in both classical and robust versions; the semiparametric R/S(n) method, proposed by Hurst [Long term storage in reservoirs, Trans. Am. Soc. Civil Eng. 116 (1986), 770–779] and the maximum likelihood method (see [R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986), 517–532]), by considering the approximation suggested by Whittle [Hypothesis Testing in Time Series Analysis (1953), Hafner, New York].. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z 2023-04-28T10:51:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/27672 |
url |
http://hdl.handle.net/10400.5/27672 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Crato, Nuno; R.R. Linhares and Sílvia R. C. Lopes .(2010). “Statistical properties of detrended fluctuation analysis”. Journal of Statistical Computation and Simulation, Vol. 80, No. 6: pp. 625-641. (Search PDF in 2023). 1563-5163 (Online) 10.1080/00949650902755152 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131584679378944 |