Explaining the S&P 500: How does certain commodities affect the index

Detalhes bibliográficos
Autor(a) principal: Varela, Mailson Manuel Teixeira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/29669
Resumo: In recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized decision-making processes across various domains. Deep Learning algorithms, particularly LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in complex contexts, such as financial markets. However, the inherent challenge of interpreting these models has led to a tradeoff between accuracy and transparency. The need for Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance, where understanding the model's reasoning is crucial for informed decision-making. Our study comprises two fundamental phases: model development and explanation. The initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting. Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit of accurate predictions. Dow Jones emerges as one of the most influential variables in forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative impact in both models, penalizing both performance with its effects and unveiling its unique role. Our findings inform decision-making in finance, advocating for transparency and advancing predictive models and interpretability.
id RCAP_04c63446b8558a5818f1a77acb237045
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/29669
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Explaining the S&P 500: How does certain commodities affect the indexMachine learningFinancial marketExplainabilitySHAPLIMEInteligência artificial -- Artificial intelligenceMercado financeiroExplicabilidadeIn recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized decision-making processes across various domains. Deep Learning algorithms, particularly LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in complex contexts, such as financial markets. However, the inherent challenge of interpreting these models has led to a tradeoff between accuracy and transparency. The need for Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance, where understanding the model's reasoning is crucial for informed decision-making. Our study comprises two fundamental phases: model development and explanation. The initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting. Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit of accurate predictions. Dow Jones emerges as one of the most influential variables in forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative impact in both models, penalizing both performance with its effects and unveiling its unique role. Our findings inform decision-making in finance, advocating for transparency and advancing predictive models and interpretability.Nos últimos anos, a proliferação da Inteligência Artificial (IA) revolucionou os processos de tomada de decisão em vários domínios. Algoritmos de Aprendizagem Profunda, particularmente modelos LSTM e XGBoost, emergiram como ferramentas poderosas para previsões precisas em contextos complexos, como os mercados financeiros. No entanto, o desafio inerente de interpretar esses modelos levou a um equilíbrio entre precisão e transparência. A necessidade de Inteligência Artificial Explicável (XAI) torna-se fundamental em domínios críticos, como finanças, onde entender o raciocínio do modelo é crucial para a tomada de decisões informadas. Nosso estudo compreende duas fases fundamentais: desenvolvimento do modelo e explicação. A fase inicial concentra-se na criação de modelos LSTM e XGBoost, ajuste de seus hiperparâmetros e otimização do desempenho preditivo para a previsão do índice S&P 500. Métricas rigorosas de avaliação, incluindo MAE, MSE, MAPE e RMSE, orientam nossa busca por previsões precisas. O índice Dow Jones emerge como uma das variáveis mais influentes na previsão do S&P 500, juntamente com o Bitcoin, que, interessantemente, exerce um impacto consistentemente negativo em ambos os modelos, penalizando o desempenho com seus efeitos e revelando seu papel único. Nossas descobertas informam a tomada de decisões financeiras, advogando pela transparência e promovendo modelos preditivos e interpretabilidade avançados.2023-11-20T14:29:26Z2023-11-13T00:00:00Z2023-11-132023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29669TID:203389050engVarela, Mailson Manuel Teixeirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-26T01:18:05Zoai:repositorio.iscte-iul.pt:10071/29669Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:19:46.575809Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Explaining the S&P 500: How does certain commodities affect the index
title Explaining the S&P 500: How does certain commodities affect the index
spellingShingle Explaining the S&P 500: How does certain commodities affect the index
Varela, Mailson Manuel Teixeira
Machine learning
Financial market
Explainability
SHAP
LIME
Inteligência artificial -- Artificial intelligence
Mercado financeiro
Explicabilidade
title_short Explaining the S&P 500: How does certain commodities affect the index
title_full Explaining the S&P 500: How does certain commodities affect the index
title_fullStr Explaining the S&P 500: How does certain commodities affect the index
title_full_unstemmed Explaining the S&P 500: How does certain commodities affect the index
title_sort Explaining the S&P 500: How does certain commodities affect the index
author Varela, Mailson Manuel Teixeira
author_facet Varela, Mailson Manuel Teixeira
author_role author
dc.contributor.author.fl_str_mv Varela, Mailson Manuel Teixeira
dc.subject.por.fl_str_mv Machine learning
Financial market
Explainability
SHAP
LIME
Inteligência artificial -- Artificial intelligence
Mercado financeiro
Explicabilidade
topic Machine learning
Financial market
Explainability
SHAP
LIME
Inteligência artificial -- Artificial intelligence
Mercado financeiro
Explicabilidade
description In recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized decision-making processes across various domains. Deep Learning algorithms, particularly LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in complex contexts, such as financial markets. However, the inherent challenge of interpreting these models has led to a tradeoff between accuracy and transparency. The need for Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance, where understanding the model's reasoning is crucial for informed decision-making. Our study comprises two fundamental phases: model development and explanation. The initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting. Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit of accurate predictions. Dow Jones emerges as one of the most influential variables in forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative impact in both models, penalizing both performance with its effects and unveiling its unique role. Our findings inform decision-making in finance, advocating for transparency and advancing predictive models and interpretability.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-20T14:29:26Z
2023-11-13T00:00:00Z
2023-11-13
2023-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/29669
TID:203389050
url http://hdl.handle.net/10071/29669
identifier_str_mv TID:203389050
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135496371175424