Explaining the S&P 500: How does certain commodities affect the index
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/29669 |
Resumo: | In recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized decision-making processes across various domains. Deep Learning algorithms, particularly LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in complex contexts, such as financial markets. However, the inherent challenge of interpreting these models has led to a tradeoff between accuracy and transparency. The need for Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance, where understanding the model's reasoning is crucial for informed decision-making. Our study comprises two fundamental phases: model development and explanation. The initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting. Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit of accurate predictions. Dow Jones emerges as one of the most influential variables in forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative impact in both models, penalizing both performance with its effects and unveiling its unique role. Our findings inform decision-making in finance, advocating for transparency and advancing predictive models and interpretability. |
id |
RCAP_04c63446b8558a5818f1a77acb237045 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/29669 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Explaining the S&P 500: How does certain commodities affect the indexMachine learningFinancial marketExplainabilitySHAPLIMEInteligência artificial -- Artificial intelligenceMercado financeiroExplicabilidadeIn recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized decision-making processes across various domains. Deep Learning algorithms, particularly LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in complex contexts, such as financial markets. However, the inherent challenge of interpreting these models has led to a tradeoff between accuracy and transparency. The need for Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance, where understanding the model's reasoning is crucial for informed decision-making. Our study comprises two fundamental phases: model development and explanation. The initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting. Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit of accurate predictions. Dow Jones emerges as one of the most influential variables in forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative impact in both models, penalizing both performance with its effects and unveiling its unique role. Our findings inform decision-making in finance, advocating for transparency and advancing predictive models and interpretability.Nos últimos anos, a proliferação da Inteligência Artificial (IA) revolucionou os processos de tomada de decisão em vários domínios. Algoritmos de Aprendizagem Profunda, particularmente modelos LSTM e XGBoost, emergiram como ferramentas poderosas para previsões precisas em contextos complexos, como os mercados financeiros. No entanto, o desafio inerente de interpretar esses modelos levou a um equilíbrio entre precisão e transparência. A necessidade de Inteligência Artificial Explicável (XAI) torna-se fundamental em domínios críticos, como finanças, onde entender o raciocínio do modelo é crucial para a tomada de decisões informadas. Nosso estudo compreende duas fases fundamentais: desenvolvimento do modelo e explicação. A fase inicial concentra-se na criação de modelos LSTM e XGBoost, ajuste de seus hiperparâmetros e otimização do desempenho preditivo para a previsão do índice S&P 500. Métricas rigorosas de avaliação, incluindo MAE, MSE, MAPE e RMSE, orientam nossa busca por previsões precisas. O índice Dow Jones emerge como uma das variáveis mais influentes na previsão do S&P 500, juntamente com o Bitcoin, que, interessantemente, exerce um impacto consistentemente negativo em ambos os modelos, penalizando o desempenho com seus efeitos e revelando seu papel único. Nossas descobertas informam a tomada de decisões financeiras, advogando pela transparência e promovendo modelos preditivos e interpretabilidade avançados.2023-11-20T14:29:26Z2023-11-13T00:00:00Z2023-11-132023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29669TID:203389050engVarela, Mailson Manuel Teixeirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-26T01:18:05Zoai:repositorio.iscte-iul.pt:10071/29669Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:19:46.575809Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Explaining the S&P 500: How does certain commodities affect the index |
title |
Explaining the S&P 500: How does certain commodities affect the index |
spellingShingle |
Explaining the S&P 500: How does certain commodities affect the index Varela, Mailson Manuel Teixeira Machine learning Financial market Explainability SHAP LIME Inteligência artificial -- Artificial intelligence Mercado financeiro Explicabilidade |
title_short |
Explaining the S&P 500: How does certain commodities affect the index |
title_full |
Explaining the S&P 500: How does certain commodities affect the index |
title_fullStr |
Explaining the S&P 500: How does certain commodities affect the index |
title_full_unstemmed |
Explaining the S&P 500: How does certain commodities affect the index |
title_sort |
Explaining the S&P 500: How does certain commodities affect the index |
author |
Varela, Mailson Manuel Teixeira |
author_facet |
Varela, Mailson Manuel Teixeira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Varela, Mailson Manuel Teixeira |
dc.subject.por.fl_str_mv |
Machine learning Financial market Explainability SHAP LIME Inteligência artificial -- Artificial intelligence Mercado financeiro Explicabilidade |
topic |
Machine learning Financial market Explainability SHAP LIME Inteligência artificial -- Artificial intelligence Mercado financeiro Explicabilidade |
description |
In recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized decision-making processes across various domains. Deep Learning algorithms, particularly LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in complex contexts, such as financial markets. However, the inherent challenge of interpreting these models has led to a tradeoff between accuracy and transparency. The need for Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance, where understanding the model's reasoning is crucial for informed decision-making. Our study comprises two fundamental phases: model development and explanation. The initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting. Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit of accurate predictions. Dow Jones emerges as one of the most influential variables in forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative impact in both models, penalizing both performance with its effects and unveiling its unique role. Our findings inform decision-making in finance, advocating for transparency and advancing predictive models and interpretability. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-20T14:29:26Z 2023-11-13T00:00:00Z 2023-11-13 2023-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/29669 TID:203389050 |
url |
http://hdl.handle.net/10071/29669 |
identifier_str_mv |
TID:203389050 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135496371175424 |