Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola

Detalhes bibliográficos
Autor(a) principal: Contreiras, Gilson
Data de Publicação: 2019
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://eras.mundis.pt/index.php/eras/article/view/39
Resumo: The present study is about Origami Geometry, solving the problem of doubling the cube and the angle trisection. In order to find an answer to this question, we propose to achieve the following general objective: to know the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle, regarding the specific objectives: 1) theoretical and methodological analysis of the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle; 2) interpret the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle and 3) solving methodically the proplemas of doubling the cube and tricessection of an angle to arrive at the solution of the cubic equation , where a Bible study was chosen. The research sought mainly theoretical support for the postulates written by Euclides of Alexandria.
id RCAP_0dac1517bf0904a5b4fb946a59aed5ca
oai_identifier_str oai:ojs2.eras.mundis.pt:article/39
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in AngolaA GEOMETRICA COM ORIGAMI, RESOLUÇÃO DO PROBLEMA DA DUPLICAÇÃO DO CUBO E DA TRISSECÇÃO DE UM ÂNGULO: Perspetivas Futuras Para o Programa de Geometria Euclidiana no Ensino Superior em AngolaGeometryOrigamiAxioms of HuzitaHatoriGeometriaOrigamiAxiomas de HuzitaHatoriThe present study is about Origami Geometry, solving the problem of doubling the cube and the angle trisection. In order to find an answer to this question, we propose to achieve the following general objective: to know the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle, regarding the specific objectives: 1) theoretical and methodological analysis of the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle; 2) interpret the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle and 3) solving methodically the proplemas of doubling the cube and tricessection of an angle to arrive at the solution of the cubic equation , where a Bible study was chosen. The research sought mainly theoretical support for the postulates written by Euclides of Alexandria.O presente estudo trata sobre a Geometria do Origami, resolução do problema da duplicação do cubo e da trissecção do ângulo. No sentido de encontrar resposta para tal questão, propomos em alcançar o seguinte objetivo geral: conhecer os axiomas de Huzita-Hatore para resolver os problemas da duplicação do cubo e da trisseção de um ângulo, quanto aos objetivos específicos: 1) a formação teórica e metodológica dos axiomas de Huzita-Hatore para resolver os problemas da duplicação do cubo e da trissecção de um ângulo; 2) interpretar os axiomas de Huzita- Hatore para resolver os problemas da duplicação do cubo e da trissecção de um ângulo e 3) resolver de forma metodologica os proplemas da duplição do cubo e da tricesseção de um ângulo para chegar até à resolução da equação cúbica, onde optou-se por uma pesquisa bibleografica. Na pesquisa buscou-se, principalmente, suporte teórico os postulados escritos por Euclides de AlexandriaMUNDIS2019-12-30T00:00:00Zinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://eras.mundis.pt/index.php/eras/article/view/39oai:ojs2.eras.mundis.pt:article/39ERAS | Revista Europeia de Estudos Artísticos ; Vol. 10 N.º 4 (2019): 39.ª Edição | ERAS; 1-191647-35582184-2116reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://eras.mundis.pt/index.php/eras/article/view/39https://eras.mundis.pt/index.php/eras/article/view/39/23Direitos de Autor (c) 2022 ERAS | Revista Europeia de Estudos Artísticosinfo:eu-repo/semantics/openAccessContreiras, Gilson2022-09-05T13:57:36Zoai:ojs2.eras.mundis.pt:article/39Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:10:40.579193Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
A GEOMETRICA COM ORIGAMI, RESOLUÇÃO DO PROBLEMA DA DUPLICAÇÃO DO CUBO E DA TRISSECÇÃO DE UM ÂNGULO: Perspetivas Futuras Para o Programa de Geometria Euclidiana no Ensino Superior em Angola
title Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
spellingShingle Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
Contreiras, Gilson
Geometry
Origami
Axioms of Huzita
Hatori
Geometria
Origami
Axiomas de Huzita
Hatori
title_short Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
title_full Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
title_fullStr Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
title_full_unstemmed Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
title_sort Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
author Contreiras, Gilson
author_facet Contreiras, Gilson
author_role author
dc.contributor.author.fl_str_mv Contreiras, Gilson
dc.subject.por.fl_str_mv Geometry
Origami
Axioms of Huzita
Hatori
Geometria
Origami
Axiomas de Huzita
Hatori
topic Geometry
Origami
Axioms of Huzita
Hatori
Geometria
Origami
Axiomas de Huzita
Hatori
description The present study is about Origami Geometry, solving the problem of doubling the cube and the angle trisection. In order to find an answer to this question, we propose to achieve the following general objective: to know the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle, regarding the specific objectives: 1) theoretical and methodological analysis of the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle; 2) interpret the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle and 3) solving methodically the proplemas of doubling the cube and tricessection of an angle to arrive at the solution of the cubic equation , where a Bible study was chosen. The research sought mainly theoretical support for the postulates written by Euclides of Alexandria.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-30T00:00:00Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://eras.mundis.pt/index.php/eras/article/view/39
oai:ojs2.eras.mundis.pt:article/39
url https://eras.mundis.pt/index.php/eras/article/view/39
identifier_str_mv oai:ojs2.eras.mundis.pt:article/39
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://eras.mundis.pt/index.php/eras/article/view/39
https://eras.mundis.pt/index.php/eras/article/view/39/23
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2022 ERAS | Revista Europeia de Estudos Artísticos
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2022 ERAS | Revista Europeia de Estudos Artísticos
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MUNDIS
publisher.none.fl_str_mv MUNDIS
dc.source.none.fl_str_mv ERAS | Revista Europeia de Estudos Artísticos ; Vol. 10 N.º 4 (2019): 39.ª Edição | ERAS; 1-19
1647-3558
2184-2116
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129977810059264