Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://eras.mundis.pt/index.php/eras/article/view/39 |
Resumo: | The present study is about Origami Geometry, solving the problem of doubling the cube and the angle trisection. In order to find an answer to this question, we propose to achieve the following general objective: to know the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle, regarding the specific objectives: 1) theoretical and methodological analysis of the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle; 2) interpret the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle and 3) solving methodically the proplemas of doubling the cube and tricessection of an angle to arrive at the solution of the cubic equation , where a Bible study was chosen. The research sought mainly theoretical support for the postulates written by Euclides of Alexandria. |
id |
RCAP_0dac1517bf0904a5b4fb946a59aed5ca |
---|---|
oai_identifier_str |
oai:ojs2.eras.mundis.pt:article/39 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in AngolaA GEOMETRICA COM ORIGAMI, RESOLUÇÃO DO PROBLEMA DA DUPLICAÇÃO DO CUBO E DA TRISSECÇÃO DE UM ÂNGULO: Perspetivas Futuras Para o Programa de Geometria Euclidiana no Ensino Superior em AngolaGeometryOrigamiAxioms of HuzitaHatoriGeometriaOrigamiAxiomas de HuzitaHatoriThe present study is about Origami Geometry, solving the problem of doubling the cube and the angle trisection. In order to find an answer to this question, we propose to achieve the following general objective: to know the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle, regarding the specific objectives: 1) theoretical and methodological analysis of the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle; 2) interpret the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle and 3) solving methodically the proplemas of doubling the cube and tricessection of an angle to arrive at the solution of the cubic equation , where a Bible study was chosen. The research sought mainly theoretical support for the postulates written by Euclides of Alexandria.O presente estudo trata sobre a Geometria do Origami, resolução do problema da duplicação do cubo e da trissecção do ângulo. No sentido de encontrar resposta para tal questão, propomos em alcançar o seguinte objetivo geral: conhecer os axiomas de Huzita-Hatore para resolver os problemas da duplicação do cubo e da trisseção de um ângulo, quanto aos objetivos específicos: 1) a formação teórica e metodológica dos axiomas de Huzita-Hatore para resolver os problemas da duplicação do cubo e da trissecção de um ângulo; 2) interpretar os axiomas de Huzita- Hatore para resolver os problemas da duplicação do cubo e da trissecção de um ângulo e 3) resolver de forma metodologica os proplemas da duplição do cubo e da tricesseção de um ângulo para chegar até à resolução da equação cúbica, onde optou-se por uma pesquisa bibleografica. Na pesquisa buscou-se, principalmente, suporte teórico os postulados escritos por Euclides de AlexandriaMUNDIS2019-12-30T00:00:00Zinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://eras.mundis.pt/index.php/eras/article/view/39oai:ojs2.eras.mundis.pt:article/39ERAS | Revista Europeia de Estudos Artísticos ; Vol. 10 N.º 4 (2019): 39.ª Edição | ERAS; 1-191647-35582184-2116reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://eras.mundis.pt/index.php/eras/article/view/39https://eras.mundis.pt/index.php/eras/article/view/39/23Direitos de Autor (c) 2022 ERAS | Revista Europeia de Estudos Artísticosinfo:eu-repo/semantics/openAccessContreiras, Gilson2022-09-05T13:57:36Zoai:ojs2.eras.mundis.pt:article/39Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:10:40.579193Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola A GEOMETRICA COM ORIGAMI, RESOLUÇÃO DO PROBLEMA DA DUPLICAÇÃO DO CUBO E DA TRISSECÇÃO DE UM ÂNGULO: Perspetivas Futuras Para o Programa de Geometria Euclidiana no Ensino Superior em Angola |
title |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola |
spellingShingle |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola Contreiras, Gilson Geometry Origami Axioms of Huzita Hatori Geometria Origami Axiomas de Huzita Hatori |
title_short |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola |
title_full |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola |
title_fullStr |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola |
title_full_unstemmed |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola |
title_sort |
Geometric with origami, solving the problem of duplicating the cube and trisecting an angle, future perspectives for the euclidean geometry program in higher education in Angola |
author |
Contreiras, Gilson |
author_facet |
Contreiras, Gilson |
author_role |
author |
dc.contributor.author.fl_str_mv |
Contreiras, Gilson |
dc.subject.por.fl_str_mv |
Geometry Origami Axioms of Huzita Hatori Geometria Origami Axiomas de Huzita Hatori |
topic |
Geometry Origami Axioms of Huzita Hatori Geometria Origami Axiomas de Huzita Hatori |
description |
The present study is about Origami Geometry, solving the problem of doubling the cube and the angle trisection. In order to find an answer to this question, we propose to achieve the following general objective: to know the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle, regarding the specific objectives: 1) theoretical and methodological analysis of the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle; 2) interpret the Huzita-Hatore axioms to solve the problems of doubling the cube and the trisection of an angle and 3) solving methodically the proplemas of doubling the cube and tricessection of an angle to arrive at the solution of the cubic equation , where a Bible study was chosen. The research sought mainly theoretical support for the postulates written by Euclides of Alexandria. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-30T00:00:00Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://eras.mundis.pt/index.php/eras/article/view/39 oai:ojs2.eras.mundis.pt:article/39 |
url |
https://eras.mundis.pt/index.php/eras/article/view/39 |
identifier_str_mv |
oai:ojs2.eras.mundis.pt:article/39 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://eras.mundis.pt/index.php/eras/article/view/39 https://eras.mundis.pt/index.php/eras/article/view/39/23 |
dc.rights.driver.fl_str_mv |
Direitos de Autor (c) 2022 ERAS | Revista Europeia de Estudos Artísticos info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos de Autor (c) 2022 ERAS | Revista Europeia de Estudos Artísticos |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MUNDIS |
publisher.none.fl_str_mv |
MUNDIS |
dc.source.none.fl_str_mv |
ERAS | Revista Europeia de Estudos Artísticos ; Vol. 10 N.º 4 (2019): 39.ª Edição | ERAS; 1-19 1647-3558 2184-2116 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799129977810059264 |