Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification

Detalhes bibliográficos
Autor(a) principal: Fernandes, Inês de Jesus
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31138
Resumo: In the past, most bone tissue engineering (TE) strategies were focused on the recapitulation of intramembranous ossification (IMO) process. Bone-like tissues were successfully obtained in vitro, however, after implantation the created tissues lack of a functional vascular supply, resulting in necrotic cores. During the last decade, approaches based in endochondral ossification (ECO) have been increasingly explored. The secretion of osteogenic and angiogenic factors by the cells present in the hypertrophic cartilage templates allows bone tissue repair but also helps tissue vascularization. In chapter I, the most recent ECO approaches used in bone TE are highlighted and discussed. Chapter II describes the methods used to develop an in vitro ECO approach. In chapter III, the results obtained related with the characterization of the obtained bone-like microtissues are presented and discussed. The developed in vitro ECO model relies in the co-culture of 3D micro-cartilaginous templates with umbilical cord-derived mesenchymal stem/stromal cells (UCMSCs) and human umbilical vein endothelial cells (HUVECs). Our hypothesis is that such engineered and privileged microenvironment would mimic the ECO process, leading to the in vitro production of vascularized bone-like microtissues. For that, MSCs-only 3D microtemplates were produced at high-rates and cultured in vitro for 21 days. Then, such microtemplates were co-cultured with UCMSCs and HUVECs within liquefied and multilayered microcapsules, in dynamic conditions, for another 21 days. Microcapsules with chondrogenically-primed 3D microtemplates were cultured with (ECO) and without (ECO control) osteogenic differentiation factors. Also, microcapsules with non-primed 3D microtemplates were cultured with (IMO) and without (negative control) osteogenic differentiation factors. Results show that both 3D microtemplates and microcapsules were able to maintain cell viability up to 21 days. The cartilaginous nature of the 3D templates cultured in chondrogenic medium was confirmed. After 21 days of encapsulation, the ECO microcapsules presented evidence of bone extracellular matrix production and higher matrix mineralization, being the only condition to present a calcium/phosphorous (Ca/P) ratio (1.71) close to the native hydroxyapatite ratio (1.67). Furthermore, both ECO and ECO control conditions successfully induced endothelial cell recruitment. These data show the relevance of using chondrogenically primed 3D microtemplates in bone repair, highlighting the advantage of ECO over IMO approach. In conclusion, this ECO bioencapsulation approach revealed to be a promising bone regeneration strategy. Ultimately, chapter IV discusses the main conclusions and future perspectives related to the potential of ECO approaches in tissue engineering and regenerative medicine.
id RCAP_1068d4fb54bd6ec90b4de99670f4ae78
oai_identifier_str oai:ria.ua.pt:10773/31138
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification3D co-cultureBioencapsulationBone regenerationEndochondral ossificationEndothelial cellsDynamic cultureIn vitro vascularizationLayer-by-layerMesenchymal stem cellsTissue engineeringUmbilical cordIn the past, most bone tissue engineering (TE) strategies were focused on the recapitulation of intramembranous ossification (IMO) process. Bone-like tissues were successfully obtained in vitro, however, after implantation the created tissues lack of a functional vascular supply, resulting in necrotic cores. During the last decade, approaches based in endochondral ossification (ECO) have been increasingly explored. The secretion of osteogenic and angiogenic factors by the cells present in the hypertrophic cartilage templates allows bone tissue repair but also helps tissue vascularization. In chapter I, the most recent ECO approaches used in bone TE are highlighted and discussed. Chapter II describes the methods used to develop an in vitro ECO approach. In chapter III, the results obtained related with the characterization of the obtained bone-like microtissues are presented and discussed. The developed in vitro ECO model relies in the co-culture of 3D micro-cartilaginous templates with umbilical cord-derived mesenchymal stem/stromal cells (UCMSCs) and human umbilical vein endothelial cells (HUVECs). Our hypothesis is that such engineered and privileged microenvironment would mimic the ECO process, leading to the in vitro production of vascularized bone-like microtissues. For that, MSCs-only 3D microtemplates were produced at high-rates and cultured in vitro for 21 days. Then, such microtemplates were co-cultured with UCMSCs and HUVECs within liquefied and multilayered microcapsules, in dynamic conditions, for another 21 days. Microcapsules with chondrogenically-primed 3D microtemplates were cultured with (ECO) and without (ECO control) osteogenic differentiation factors. Also, microcapsules with non-primed 3D microtemplates were cultured with (IMO) and without (negative control) osteogenic differentiation factors. Results show that both 3D microtemplates and microcapsules were able to maintain cell viability up to 21 days. The cartilaginous nature of the 3D templates cultured in chondrogenic medium was confirmed. After 21 days of encapsulation, the ECO microcapsules presented evidence of bone extracellular matrix production and higher matrix mineralization, being the only condition to present a calcium/phosphorous (Ca/P) ratio (1.71) close to the native hydroxyapatite ratio (1.67). Furthermore, both ECO and ECO control conditions successfully induced endothelial cell recruitment. These data show the relevance of using chondrogenically primed 3D microtemplates in bone repair, highlighting the advantage of ECO over IMO approach. In conclusion, this ECO bioencapsulation approach revealed to be a promising bone regeneration strategy. Ultimately, chapter IV discusses the main conclusions and future perspectives related to the potential of ECO approaches in tissue engineering and regenerative medicine.No passado, a maioria das estratégias de engenharia de tecidos ósseos baseavam-se na ossificação intramembranar (IMO). O tecido ósseo era obtido in vitro, no entanto, depois da implantação a falta de vascularização provocava morte celular no interior do tecido. Na última década, as estratégias baseadas na ossificação endocondral (ECO) têm sido cada vez mais exploradas. A secreção de fatores osteogénicos e angiogénicos pelas células presentes nos templates de cartilagem hipertrófica permitem a regeneração do tecido ósseo como ainda ajudam na vascularização do mesmo. No capítulo I, as estratégias mais recentes de ECO, utilizadas na engenharia de tecido ósseo, são comparadas e debatidas. Por sua vez, no capítulo II são descritos os métodos utilizados para criar uma estratégia de ECO in vitro. No capítulo III, são apresentados e analisados os resultados da caracterização dos microtecidos ósseos obtidos. O modelo criado de ECO in vitro consiste na co-cultura de microtemplates 3D cartilaginosos com células estaminais mesenquimais do cordão umbilical (UCMSCs) e células endoteliais isoladas da veia do cordão umbilical (HUVECs). Hipoteticamente, este microambiente privilegiado irá simular as condições do processo de ECO, gerando microtecidos ósseos vascularizados. Para o efeito, microtemplates 3D constituídos apenas por UCMSCs foram criados, cultivados por 21 dias e depois co-cultivados com UCMSCs e HUVECs em microcápsulas liquefeitas e com membrana em multicamada, em condições dinâmicas, por mais 21 dias. Foram testadas microcápsulas com microtemplates 3D induzidos à condrogénese e cultivados com (ECO) e sem (controlo ECO) fatores de diferenciação osteogénica. Foram também testadas microcápsulas com microtemplates 3D não-induzidos, cultivados com (IMO) e sem (controlo negativo) fatores de diferenciação osteogénica. Os resultados mostraram que ambos os microtemplates 3D e microcápsulas mantiveram a sua viabilidade celular durante os respetivos 21 dias. A natureza cartilaginosa dos microtemplates 3D cultivados em meio condrogénico foi confirmada. Após 21 dias de encapsulamento, as microcápsulas ECO apresentaram evidências de produção de matriz extracelular óssea e uma maior mineralização da matriz, sendo esta a única condição com o rácio cálcio/fósforo (Ca/P, 1.71) perto da hidroxiapatite (HA) nativa (1.67). Para além disso, ambas as condições ECO e controlo ECO induziram um acentuado recrutamento de células endoteliais. Estes resultados evidenciam a relevância do uso de microtemplates 3D induzidos à condrogénese na criação e vascularização de tecido ósseo, realçando assim a vantagem da ECO sobre a IMO. Em suma, esta estratégia de ECO e bioencapsulamento mostrou-se promissora na regeneração óssea. Por fim, no capítulo IV são discutidas as principais conclusões do trabalho e o potencial das estratégias de ECO no futuro da engenharia de tecidos e medicina regenerativa.2023-03-11T00:00:00Z2021-03-02T00:00:00Z2021-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31138engFernandes, Inês de Jesusinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:08Zoai:ria.ua.pt:10773/31138Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:05.988232Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
title Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
spellingShingle Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
Fernandes, Inês de Jesus
3D co-culture
Bioencapsulation
Bone regeneration
Endochondral ossification
Endothelial cells
Dynamic culture
In vitro vascularization
Layer-by-layer
Mesenchymal stem cells
Tissue engineering
Umbilical cord
title_short Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
title_full Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
title_fullStr Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
title_full_unstemmed Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
title_sort Bioencapsulation of stem and endothelial cells towards an in vitro model for endochondral ossification
author Fernandes, Inês de Jesus
author_facet Fernandes, Inês de Jesus
author_role author
dc.contributor.author.fl_str_mv Fernandes, Inês de Jesus
dc.subject.por.fl_str_mv 3D co-culture
Bioencapsulation
Bone regeneration
Endochondral ossification
Endothelial cells
Dynamic culture
In vitro vascularization
Layer-by-layer
Mesenchymal stem cells
Tissue engineering
Umbilical cord
topic 3D co-culture
Bioencapsulation
Bone regeneration
Endochondral ossification
Endothelial cells
Dynamic culture
In vitro vascularization
Layer-by-layer
Mesenchymal stem cells
Tissue engineering
Umbilical cord
description In the past, most bone tissue engineering (TE) strategies were focused on the recapitulation of intramembranous ossification (IMO) process. Bone-like tissues were successfully obtained in vitro, however, after implantation the created tissues lack of a functional vascular supply, resulting in necrotic cores. During the last decade, approaches based in endochondral ossification (ECO) have been increasingly explored. The secretion of osteogenic and angiogenic factors by the cells present in the hypertrophic cartilage templates allows bone tissue repair but also helps tissue vascularization. In chapter I, the most recent ECO approaches used in bone TE are highlighted and discussed. Chapter II describes the methods used to develop an in vitro ECO approach. In chapter III, the results obtained related with the characterization of the obtained bone-like microtissues are presented and discussed. The developed in vitro ECO model relies in the co-culture of 3D micro-cartilaginous templates with umbilical cord-derived mesenchymal stem/stromal cells (UCMSCs) and human umbilical vein endothelial cells (HUVECs). Our hypothesis is that such engineered and privileged microenvironment would mimic the ECO process, leading to the in vitro production of vascularized bone-like microtissues. For that, MSCs-only 3D microtemplates were produced at high-rates and cultured in vitro for 21 days. Then, such microtemplates were co-cultured with UCMSCs and HUVECs within liquefied and multilayered microcapsules, in dynamic conditions, for another 21 days. Microcapsules with chondrogenically-primed 3D microtemplates were cultured with (ECO) and without (ECO control) osteogenic differentiation factors. Also, microcapsules with non-primed 3D microtemplates were cultured with (IMO) and without (negative control) osteogenic differentiation factors. Results show that both 3D microtemplates and microcapsules were able to maintain cell viability up to 21 days. The cartilaginous nature of the 3D templates cultured in chondrogenic medium was confirmed. After 21 days of encapsulation, the ECO microcapsules presented evidence of bone extracellular matrix production and higher matrix mineralization, being the only condition to present a calcium/phosphorous (Ca/P) ratio (1.71) close to the native hydroxyapatite ratio (1.67). Furthermore, both ECO and ECO control conditions successfully induced endothelial cell recruitment. These data show the relevance of using chondrogenically primed 3D microtemplates in bone repair, highlighting the advantage of ECO over IMO approach. In conclusion, this ECO bioencapsulation approach revealed to be a promising bone regeneration strategy. Ultimately, chapter IV discusses the main conclusions and future perspectives related to the potential of ECO approaches in tissue engineering and regenerative medicine.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-02T00:00:00Z
2021-03-02
2023-03-11T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31138
url http://hdl.handle.net/10773/31138
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137686372483072