On the algebraic approximation of Lusternik-Schnirelmann category
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/4382 |
Resumo: | Algebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann category. In this paper the L.-S. category and its approximations are studied from the point of view of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fundamental properties of the abstract invariants and discuss, in particular, their behaviour with respect to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category, and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a new algebraic approximation of L.-S. category. This invariant which we denote by $\ell$ is the first algebraic approximation of the L.-S. category which is not necessarily $\leq 1$ for spaces having the same Adams-Hilton model as a wedge of spheres. For a space $X$ the number $\ell (X)$ can be determined from an Anick model of $X$. Thanks to the general theory one knows \textit{a priori} that $\ell$ is a lower bound of the L.-S. category which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space. |
id |
RCAP_1110cade5ac11450954aaa05d835f1d0 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/4382 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the algebraic approximation of Lusternik-Schnirelmann categoryLusternik-Schnirelmann categoryHopf algebras up to homotopyModel categoriesScience & TechnologyAlgebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann category. In this paper the L.-S. category and its approximations are studied from the point of view of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fundamental properties of the abstract invariants and discuss, in particular, their behaviour with respect to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category, and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a new algebraic approximation of L.-S. category. This invariant which we denote by $\ell$ is the first algebraic approximation of the L.-S. category which is not necessarily $\leq 1$ for spaces having the same Adams-Hilton model as a wedge of spheres. For a space $X$ the number $\ell (X)$ can be determined from an Anick model of $X$. Thanks to the general theory one knows \textit{a priori} that $\ell$ is a lower bound of the L.-S. category which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space.ElsevierUniversidade do MinhoKahl, Thomas2003-062003-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/4382eng"Journal of Pure and Applied Algebra". ISSN 0022-4049. 181:2/3 (2003) 227-277.0022-404910.1016/S0022-4049(02)00306-7http://www.elsevier.com/wps/find/journaldescription.cws_home/505614/description#descriptioninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:37Zoai:repositorium.sdum.uminho.pt:1822/4382Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:37:27.676597Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the algebraic approximation of Lusternik-Schnirelmann category |
title |
On the algebraic approximation of Lusternik-Schnirelmann category |
spellingShingle |
On the algebraic approximation of Lusternik-Schnirelmann category Kahl, Thomas Lusternik-Schnirelmann category Hopf algebras up to homotopy Model categories Science & Technology |
title_short |
On the algebraic approximation of Lusternik-Schnirelmann category |
title_full |
On the algebraic approximation of Lusternik-Schnirelmann category |
title_fullStr |
On the algebraic approximation of Lusternik-Schnirelmann category |
title_full_unstemmed |
On the algebraic approximation of Lusternik-Schnirelmann category |
title_sort |
On the algebraic approximation of Lusternik-Schnirelmann category |
author |
Kahl, Thomas |
author_facet |
Kahl, Thomas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Kahl, Thomas |
dc.subject.por.fl_str_mv |
Lusternik-Schnirelmann category Hopf algebras up to homotopy Model categories Science & Technology |
topic |
Lusternik-Schnirelmann category Hopf algebras up to homotopy Model categories Science & Technology |
description |
Algebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann category. In this paper the L.-S. category and its approximations are studied from the point of view of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fundamental properties of the abstract invariants and discuss, in particular, their behaviour with respect to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category, and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a new algebraic approximation of L.-S. category. This invariant which we denote by $\ell$ is the first algebraic approximation of the L.-S. category which is not necessarily $\leq 1$ for spaces having the same Adams-Hilton model as a wedge of spheres. For a space $X$ the number $\ell (X)$ can be determined from an Anick model of $X$. Thanks to the general theory one knows \textit{a priori} that $\ell$ is a lower bound of the L.-S. category which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-06 2003-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/4382 |
url |
http://hdl.handle.net/1822/4382 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Journal of Pure and Applied Algebra". ISSN 0022-4049. 181:2/3 (2003) 227-277. 0022-4049 10.1016/S0022-4049(02)00306-7 http://www.elsevier.com/wps/find/journaldescription.cws_home/505614/description#description |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132908241289216 |