On the algebraic approximation of Lusternik-Schnirelmann category

Detalhes bibliográficos
Autor(a) principal: Kahl, Thomas
Data de Publicação: 2003
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/4382
Resumo: Algebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann category. In this paper the L.-S. category and its approximations are studied from the point of view of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fundamental properties of the abstract invariants and discuss, in particular, their behaviour with respect to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category, and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a new algebraic approximation of L.-S. category. This invariant which we denote by $\ell$ is the first algebraic approximation of the L.-S. category which is not necessarily $\leq 1$ for spaces having the same Adams-Hilton model as a wedge of spheres. For a space $X$ the number $\ell (X)$ can be determined from an Anick model of $X$. Thanks to the general theory one knows \textit{a priori} that $\ell$ is a lower bound of the L.-S. category which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space.
id RCAP_1110cade5ac11450954aaa05d835f1d0
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/4382
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the algebraic approximation of Lusternik-Schnirelmann categoryLusternik-Schnirelmann categoryHopf algebras up to homotopyModel categoriesScience & TechnologyAlgebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann category. In this paper the L.-S. category and its approximations are studied from the point of view of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fundamental properties of the abstract invariants and discuss, in particular, their behaviour with respect to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category, and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a new algebraic approximation of L.-S. category. This invariant which we denote by $\ell$ is the first algebraic approximation of the L.-S. category which is not necessarily $\leq 1$ for spaces having the same Adams-Hilton model as a wedge of spheres. For a space $X$ the number $\ell (X)$ can be determined from an Anick model of $X$. Thanks to the general theory one knows \textit{a priori} that $\ell$ is a lower bound of the L.-S. category which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space.ElsevierUniversidade do MinhoKahl, Thomas2003-062003-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/4382eng"Journal of Pure and Applied Algebra". ISSN 0022-4049. 181:2/3 (2003) 227-277.0022-404910.1016/S0022-4049(02)00306-7http://www.elsevier.com/wps/find/journaldescription.cws_home/505614/description#descriptioninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:37Zoai:repositorium.sdum.uminho.pt:1822/4382Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:37:27.676597Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the algebraic approximation of Lusternik-Schnirelmann category
title On the algebraic approximation of Lusternik-Schnirelmann category
spellingShingle On the algebraic approximation of Lusternik-Schnirelmann category
Kahl, Thomas
Lusternik-Schnirelmann category
Hopf algebras up to homotopy
Model categories
Science & Technology
title_short On the algebraic approximation of Lusternik-Schnirelmann category
title_full On the algebraic approximation of Lusternik-Schnirelmann category
title_fullStr On the algebraic approximation of Lusternik-Schnirelmann category
title_full_unstemmed On the algebraic approximation of Lusternik-Schnirelmann category
title_sort On the algebraic approximation of Lusternik-Schnirelmann category
author Kahl, Thomas
author_facet Kahl, Thomas
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Kahl, Thomas
dc.subject.por.fl_str_mv Lusternik-Schnirelmann category
Hopf algebras up to homotopy
Model categories
Science & Technology
topic Lusternik-Schnirelmann category
Hopf algebras up to homotopy
Model categories
Science & Technology
description Algebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann category. In this paper the L.-S. category and its approximations are studied from the point of view of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fundamental properties of the abstract invariants and discuss, in particular, their behaviour with respect to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category, and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a new algebraic approximation of L.-S. category. This invariant which we denote by $\ell$ is the first algebraic approximation of the L.-S. category which is not necessarily $\leq 1$ for spaces having the same Adams-Hilton model as a wedge of spheres. For a space $X$ the number $\ell (X)$ can be determined from an Anick model of $X$. Thanks to the general theory one knows \textit{a priori} that $\ell$ is a lower bound of the L.-S. category which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space.
publishDate 2003
dc.date.none.fl_str_mv 2003-06
2003-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/4382
url http://hdl.handle.net/1822/4382
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Journal of Pure and Applied Algebra". ISSN 0022-4049. 181:2/3 (2003) 227-277.
0022-4049
10.1016/S0022-4049(02)00306-7
http://www.elsevier.com/wps/find/journaldescription.cws_home/505614/description#description
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132908241289216