Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables

Detalhes bibliográficos
Autor(a) principal: Simões, Lívia Souza
Data de Publicação: 2020
Outros Autores: Araújo, J., Vicente, A. A., Ramos, Óscar L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/61782
Resumo: β-lactoglobulin (β-Lg) is the major protein fraction of bovine whey serum and its principal gelling agent. Its gelation capacity enables conformational changes associated with protein-protein interactions that allow the design of structures with different properties and morphologies. Thus, the aim of this work was to successfully use β-Lg, purified from a commercial whey protein isolate, to develop food-grade micro- (with diameters between 200 and 300 nm) and nano- (with diameters ≤ 100 nm) structures. For this purpose, the phenomena involved in β-Lg gelation were studied under combined effects of concentrations (from 5 to 15 mg mL−1), heating temperature (from 60 to 80 °C) and heating time (from 5 to 25 min) for pH values of 3, 4, 6 and 7. The effects of such conditions on β-Lg structures were evaluated and the protein was fully characterized in terms of size, polydispersity index (PDI) and surface charge (by dynamic light scattering – DLS), morphology (by transmission electron microscopy - TEM) and conformational structure (circular dichroism, intrinsic and extrinsic fluorescence). Results have shown that β-Lg nanostructures were formed at pH 3 (with diameters between 12.1 and 22.3 nm) and at 7 (with diameters between 8.9 and 35.3 nm). At pH 4 structures were obtained at macroscale (i.e., ≥ 6 μm) for all β-Lg concentrations when heated at 70 and 80 °C, independent of the time of heating. For pH 6, it was possible to obtain β-Lg structures either at micro- (245.0 – 266.4 nm) or nanoscale (≤ 100 nm) with the lowest polydispersity (PDI) values (≤ 0.25), in accordance with TEM analyses, for heating at 80 °C for 15 min. Intrinsic and extrinsic fluorescence data and far-UV circular dichroism spectra measurements revealed conformational changes on β-Lg structure that support these evidences. A strict control of the physical and environmental conditions is crucial for developing β-Lg structures with the desired characteristics, thus calling for the understanding of the mechanisms of protein aggregation and intermolecular interaction when designing β-Lg structures with novel functionalities.
id RCAP_14cf9d47e880d128ee3ff91cfde9cc9d
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/61782
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variablesPurificationBio-based structuresGlobular proteinsWhey proteinsProtein interactionAggregationScience & Technologyβ-lactoglobulin (β-Lg) is the major protein fraction of bovine whey serum and its principal gelling agent. Its gelation capacity enables conformational changes associated with protein-protein interactions that allow the design of structures with different properties and morphologies. Thus, the aim of this work was to successfully use β-Lg, purified from a commercial whey protein isolate, to develop food-grade micro- (with diameters between 200 and 300 nm) and nano- (with diameters ≤ 100 nm) structures. For this purpose, the phenomena involved in β-Lg gelation were studied under combined effects of concentrations (from 5 to 15 mg mL−1), heating temperature (from 60 to 80 °C) and heating time (from 5 to 25 min) for pH values of 3, 4, 6 and 7. The effects of such conditions on β-Lg structures were evaluated and the protein was fully characterized in terms of size, polydispersity index (PDI) and surface charge (by dynamic light scattering – DLS), morphology (by transmission electron microscopy - TEM) and conformational structure (circular dichroism, intrinsic and extrinsic fluorescence). Results have shown that β-Lg nanostructures were formed at pH 3 (with diameters between 12.1 and 22.3 nm) and at 7 (with diameters between 8.9 and 35.3 nm). At pH 4 structures were obtained at macroscale (i.e., ≥ 6 μm) for all β-Lg concentrations when heated at 70 and 80 °C, independent of the time of heating. For pH 6, it was possible to obtain β-Lg structures either at micro- (245.0 – 266.4 nm) or nanoscale (≤ 100 nm) with the lowest polydispersity (PDI) values (≤ 0.25), in accordance with TEM analyses, for heating at 80 °C for 15 min. Intrinsic and extrinsic fluorescence data and far-UV circular dichroism spectra measurements revealed conformational changes on β-Lg structure that support these evidences. A strict control of the physical and environmental conditions is crucial for developing β-Lg structures with the desired characteristics, thus calling for the understanding of the mechanisms of protein aggregation and intermolecular interaction when designing β-Lg structures with novel functionalities.Lívia de Souza Simões gratefully acknowledges her grant to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil) from Brazil. Oscar L. Ramos gratefully acknowledges the Fundação para a Ciência e Tecnologia (FCT, Portugal) for his fellowship (SFRH/BPD/80766/2011). The authors also would like to acknowledge Ana I. Bourbon, from the International Iberian Nanotechnology Laboratory, for assistance in native polyacrylamide gel electrophoresis. This study was supported by the FCT under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte, Portugal.info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoSimões, Lívia SouzaAraújo, J.Vicente, A. A.Ramos, Óscar L.2020-032020-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/61782engSimões, Lívia S; Araújo, J.; Vicente, António A.; Ramos, Óscar L., Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables. Food Hydrocolloids, 100(105357), 20200268-005X1873-713710.1016/j.foodhyd.2019.105357http://www.elsevier.com/locate/issn/0268005Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:00:25Zoai:repositorium.sdum.uminho.pt:1822/61782Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:50:18.519743Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
title Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
spellingShingle Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
Simões, Lívia Souza
Purification
Bio-based structures
Globular proteins
Whey proteins
Protein interaction
Aggregation
Science & Technology
title_short Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
title_full Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
title_fullStr Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
title_full_unstemmed Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
title_sort Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables
author Simões, Lívia Souza
author_facet Simões, Lívia Souza
Araújo, J.
Vicente, A. A.
Ramos, Óscar L.
author_role author
author2 Araújo, J.
Vicente, A. A.
Ramos, Óscar L.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Simões, Lívia Souza
Araújo, J.
Vicente, A. A.
Ramos, Óscar L.
dc.subject.por.fl_str_mv Purification
Bio-based structures
Globular proteins
Whey proteins
Protein interaction
Aggregation
Science & Technology
topic Purification
Bio-based structures
Globular proteins
Whey proteins
Protein interaction
Aggregation
Science & Technology
description β-lactoglobulin (β-Lg) is the major protein fraction of bovine whey serum and its principal gelling agent. Its gelation capacity enables conformational changes associated with protein-protein interactions that allow the design of structures with different properties and morphologies. Thus, the aim of this work was to successfully use β-Lg, purified from a commercial whey protein isolate, to develop food-grade micro- (with diameters between 200 and 300 nm) and nano- (with diameters ≤ 100 nm) structures. For this purpose, the phenomena involved in β-Lg gelation were studied under combined effects of concentrations (from 5 to 15 mg mL−1), heating temperature (from 60 to 80 °C) and heating time (from 5 to 25 min) for pH values of 3, 4, 6 and 7. The effects of such conditions on β-Lg structures were evaluated and the protein was fully characterized in terms of size, polydispersity index (PDI) and surface charge (by dynamic light scattering – DLS), morphology (by transmission electron microscopy - TEM) and conformational structure (circular dichroism, intrinsic and extrinsic fluorescence). Results have shown that β-Lg nanostructures were formed at pH 3 (with diameters between 12.1 and 22.3 nm) and at 7 (with diameters between 8.9 and 35.3 nm). At pH 4 structures were obtained at macroscale (i.e., ≥ 6 μm) for all β-Lg concentrations when heated at 70 and 80 °C, independent of the time of heating. For pH 6, it was possible to obtain β-Lg structures either at micro- (245.0 – 266.4 nm) or nanoscale (≤ 100 nm) with the lowest polydispersity (PDI) values (≤ 0.25), in accordance with TEM analyses, for heating at 80 °C for 15 min. Intrinsic and extrinsic fluorescence data and far-UV circular dichroism spectra measurements revealed conformational changes on β-Lg structure that support these evidences. A strict control of the physical and environmental conditions is crucial for developing β-Lg structures with the desired characteristics, thus calling for the understanding of the mechanisms of protein aggregation and intermolecular interaction when designing β-Lg structures with novel functionalities.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
2020-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/61782
url http://hdl.handle.net/1822/61782
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Simões, Lívia S; Araújo, J.; Vicente, António A.; Ramos, Óscar L., Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables. Food Hydrocolloids, 100(105357), 2020
0268-005X
1873-7137
10.1016/j.foodhyd.2019.105357
http://www.elsevier.com/locate/issn/0268005X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132270610612224