Morita invariance of intrinsic characteristic Classes of Lie algebroids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/194947 |
Resumo: | In this note, we prove that intrinsic characteristic classes of Lie algebroids { which in degree one recover the modular class { behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Trans- form. Groups 13 (2008), 727{755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681{721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121{169]. |
id |
UFRGS-2_83d478fc73cb9f3c705ba5fc703cce08 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/194947 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Frejlich, Pedro Walmsley2019-06-01T02:40:00Z2018http://hdl.handle.net/10183/194947001091089In this note, we prove that intrinsic characteristic classes of Lie algebroids { which in degree one recover the modular class { behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Trans- form. Groups 13 (2008), 727{755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681{721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121{169].application/pdfengSymmetry, integrability and geometry : methods and applications. Kiev. Vol. 14 (2018) 124 12p.Álgebras de LieAlgebraLie algebroidsModular classCharacteristic classesMorita equivalenceMorita invariance of intrinsic characteristic Classes of Lie algebroidsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001091089.pdf.txt001091089.pdf.txtExtracted Texttext/plain31118http://www.lume.ufrgs.br/bitstream/10183/194947/2/001091089.pdf.txtdfd9d2c2f84286aa1fb0e8c25375d59fMD52ORIGINAL001091089.pdfTexto completo (inglês)application/pdf438909http://www.lume.ufrgs.br/bitstream/10183/194947/1/001091089.pdfcdfca9a3223dce5acd963f0e44daa2f1MD5110183/1949472019-09-18 03:44:19.707497oai:www.lume.ufrgs.br:10183/194947Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2019-09-18T06:44:19Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
title |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
spellingShingle |
Morita invariance of intrinsic characteristic Classes of Lie algebroids Frejlich, Pedro Walmsley Álgebras de Lie Algebra Lie algebroids Modular class Characteristic classes Morita equivalence |
title_short |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
title_full |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
title_fullStr |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
title_full_unstemmed |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
title_sort |
Morita invariance of intrinsic characteristic Classes of Lie algebroids |
author |
Frejlich, Pedro Walmsley |
author_facet |
Frejlich, Pedro Walmsley |
author_role |
author |
dc.contributor.author.fl_str_mv |
Frejlich, Pedro Walmsley |
dc.subject.por.fl_str_mv |
Álgebras de Lie Algebra |
topic |
Álgebras de Lie Algebra Lie algebroids Modular class Characteristic classes Morita equivalence |
dc.subject.eng.fl_str_mv |
Lie algebroids Modular class Characteristic classes Morita equivalence |
description |
In this note, we prove that intrinsic characteristic classes of Lie algebroids { which in degree one recover the modular class { behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Trans- form. Groups 13 (2008), 727{755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681{721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121{169]. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018 |
dc.date.accessioned.fl_str_mv |
2019-06-01T02:40:00Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/194947 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001091089 |
url |
http://hdl.handle.net/10183/194947 |
identifier_str_mv |
001091089 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Symmetry, integrability and geometry : methods and applications. Kiev. Vol. 14 (2018) 124 12p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/194947/2/001091089.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/194947/1/001091089.pdf |
bitstream.checksum.fl_str_mv |
dfd9d2c2f84286aa1fb0e8c25375d59f cdfca9a3223dce5acd963f0e44daa2f1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447687167737856 |