Morita invariance of intrinsic characteristic Classes of Lie algebroids

Detalhes bibliográficos
Autor(a) principal: Frejlich, Pedro Walmsley
Data de Publicação: 2018
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/194947
Resumo: In this note, we prove that intrinsic characteristic classes of Lie algebroids { which in degree one recover the modular class { behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Trans- form. Groups 13 (2008), 727{755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681{721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121{169].
id UFRGS-2_83d478fc73cb9f3c705ba5fc703cce08
oai_identifier_str oai:www.lume.ufrgs.br:10183/194947
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Frejlich, Pedro Walmsley2019-06-01T02:40:00Z2018http://hdl.handle.net/10183/194947001091089In this note, we prove that intrinsic characteristic classes of Lie algebroids { which in degree one recover the modular class { behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Trans- form. Groups 13 (2008), 727{755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681{721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121{169].application/pdfengSymmetry, integrability and geometry : methods and applications. Kiev. Vol. 14 (2018) 124 12p.Álgebras de LieAlgebraLie algebroidsModular classCharacteristic classesMorita equivalenceMorita invariance of intrinsic characteristic Classes of Lie algebroidsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001091089.pdf.txt001091089.pdf.txtExtracted Texttext/plain31118http://www.lume.ufrgs.br/bitstream/10183/194947/2/001091089.pdf.txtdfd9d2c2f84286aa1fb0e8c25375d59fMD52ORIGINAL001091089.pdfTexto completo (inglês)application/pdf438909http://www.lume.ufrgs.br/bitstream/10183/194947/1/001091089.pdfcdfca9a3223dce5acd963f0e44daa2f1MD5110183/1949472019-09-18 03:44:19.707497oai:www.lume.ufrgs.br:10183/194947Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2019-09-18T06:44:19Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Morita invariance of intrinsic characteristic Classes of Lie algebroids
title Morita invariance of intrinsic characteristic Classes of Lie algebroids
spellingShingle Morita invariance of intrinsic characteristic Classes of Lie algebroids
Frejlich, Pedro Walmsley
Álgebras de Lie
Algebra
Lie algebroids
Modular class
Characteristic classes
Morita equivalence
title_short Morita invariance of intrinsic characteristic Classes of Lie algebroids
title_full Morita invariance of intrinsic characteristic Classes of Lie algebroids
title_fullStr Morita invariance of intrinsic characteristic Classes of Lie algebroids
title_full_unstemmed Morita invariance of intrinsic characteristic Classes of Lie algebroids
title_sort Morita invariance of intrinsic characteristic Classes of Lie algebroids
author Frejlich, Pedro Walmsley
author_facet Frejlich, Pedro Walmsley
author_role author
dc.contributor.author.fl_str_mv Frejlich, Pedro Walmsley
dc.subject.por.fl_str_mv Álgebras de Lie
Algebra
topic Álgebras de Lie
Algebra
Lie algebroids
Modular class
Characteristic classes
Morita equivalence
dc.subject.eng.fl_str_mv Lie algebroids
Modular class
Characteristic classes
Morita equivalence
description In this note, we prove that intrinsic characteristic classes of Lie algebroids { which in degree one recover the modular class { behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Trans- form. Groups 13 (2008), 727{755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681{721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121{169].
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-06-01T02:40:00Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/194947
dc.identifier.nrb.pt_BR.fl_str_mv 001091089
url http://hdl.handle.net/10183/194947
identifier_str_mv 001091089
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Symmetry, integrability and geometry : methods and applications. Kiev. Vol. 14 (2018) 124 12p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/194947/2/001091089.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/194947/1/001091089.pdf
bitstream.checksum.fl_str_mv dfd9d2c2f84286aa1fb0e8c25375d59f
cdfca9a3223dce5acd963f0e44daa2f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447687167737856