Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/37383 |
Resumo: | This work reports the development of a low cost in-line color sensor for turbid liquids based on the transmission and scattering phenomena of light from RGB and IR LED sources, gathering multidimensional data. Three different methodologies to discriminate color from the turbidity influence are presented as a proof of concept approach. They are based in regression models, expectation maximization Gaussian mixtures and artificial neural networks applied to labeled measurements. Each methodology presents advantages and disadvantages which will depend on the intended implementation. Regression models revealed to be best suited for standard or occasional measurements, the EM Gaussian mixture will perform better for well-known controlled range of colors and turbidities and the neural networks have easy implementation and potential suited for real-time IoT platforms. |
id |
RCAP_193b97626fb0d3c3c7aaf4bf1cfdbd12 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/37383 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of conceptColorTurbiditySensorArtificial neural networkExpectation maximization gaussian mixtureClusteringThis work reports the development of a low cost in-line color sensor for turbid liquids based on the transmission and scattering phenomena of light from RGB and IR LED sources, gathering multidimensional data. Three different methodologies to discriminate color from the turbidity influence are presented as a proof of concept approach. They are based in regression models, expectation maximization Gaussian mixtures and artificial neural networks applied to labeled measurements. Each methodology presents advantages and disadvantages which will depend on the intended implementation. Regression models revealed to be best suited for standard or occasional measurements, the EM Gaussian mixture will perform better for well-known controlled range of colors and turbidities and the neural networks have easy implementation and potential suited for real-time IoT platforms.Elsevier2023-04-27T09:09:07Z2020-04-15T00:00:00Z2020-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/37383eng0924-424710.1016/j.sna.2020.111936Duarte, Daniel P.Nogueira, Rogério N.Bilro, Lúciainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:12:09Zoai:ria.ua.pt:10773/37383Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:59.828575Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
title |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
spellingShingle |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept Duarte, Daniel P. Color Turbidity Sensor Artificial neural network Expectation maximization gaussian mixture Clustering |
title_short |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
title_full |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
title_fullStr |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
title_full_unstemmed |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
title_sort |
Low cost color assessment of turbid liquids using supervised learning data analysis – proof of concept |
author |
Duarte, Daniel P. |
author_facet |
Duarte, Daniel P. Nogueira, Rogério N. Bilro, Lúcia |
author_role |
author |
author2 |
Nogueira, Rogério N. Bilro, Lúcia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Duarte, Daniel P. Nogueira, Rogério N. Bilro, Lúcia |
dc.subject.por.fl_str_mv |
Color Turbidity Sensor Artificial neural network Expectation maximization gaussian mixture Clustering |
topic |
Color Turbidity Sensor Artificial neural network Expectation maximization gaussian mixture Clustering |
description |
This work reports the development of a low cost in-line color sensor for turbid liquids based on the transmission and scattering phenomena of light from RGB and IR LED sources, gathering multidimensional data. Three different methodologies to discriminate color from the turbidity influence are presented as a proof of concept approach. They are based in regression models, expectation maximization Gaussian mixtures and artificial neural networks applied to labeled measurements. Each methodology presents advantages and disadvantages which will depend on the intended implementation. Regression models revealed to be best suited for standard or occasional measurements, the EM Gaussian mixture will perform better for well-known controlled range of colors and turbidities and the neural networks have easy implementation and potential suited for real-time IoT platforms. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-15T00:00:00Z 2020-04-15 2023-04-27T09:09:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/37383 |
url |
http://hdl.handle.net/10773/37383 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0924-4247 10.1016/j.sna.2020.111936 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137733872975872 |