Hyperstructures on Lie algebroids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/44529 https://doi.org/10.1142/S0129055X13430034 |
Resumo: | We define hypersymplectic structures on Lie algebroids recovering, as particular cases, all the classical results and examples of hypersymplectic structures on manifolds. We prove a 1-1 correspondence theorem between hypersymplectic structures and (pseudo-)hyperk\"{a}hler structures. We show that the hypersymplectic framework is very rich in already known compatible pairs of tensors such as Poisson-Nijenhuis, $\Omega N$ and $P \Omega$ structures. |
id |
RCAP_92da6f26123552446f4a3ba396865827 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/44529 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hyperstructures on Lie algebroidsWe define hypersymplectic structures on Lie algebroids recovering, as particular cases, all the classical results and examples of hypersymplectic structures on manifolds. We prove a 1-1 correspondence theorem between hypersymplectic structures and (pseudo-)hyperk\"{a}hler structures. We show that the hypersymplectic framework is very rich in already known compatible pairs of tensors such as Poisson-Nijenhuis, $\Omega N$ and $P \Omega$ structures.World Scientific Publishing2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44529http://hdl.handle.net/10316/44529https://doi.org/10.1142/S0129055X13430034https://doi.org/10.1142/S0129055X13430034enghttp://www.worldscientific.com/doi/abs/10.1142/S0129055X13430034Antunes, PauloNunes da Costa, Joanainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:20Zoai:estudogeral.uc.pt:10316/44529Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:24.036721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hyperstructures on Lie algebroids |
title |
Hyperstructures on Lie algebroids |
spellingShingle |
Hyperstructures on Lie algebroids Antunes, Paulo |
title_short |
Hyperstructures on Lie algebroids |
title_full |
Hyperstructures on Lie algebroids |
title_fullStr |
Hyperstructures on Lie algebroids |
title_full_unstemmed |
Hyperstructures on Lie algebroids |
title_sort |
Hyperstructures on Lie algebroids |
author |
Antunes, Paulo |
author_facet |
Antunes, Paulo Nunes da Costa, Joana |
author_role |
author |
author2 |
Nunes da Costa, Joana |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Antunes, Paulo Nunes da Costa, Joana |
description |
We define hypersymplectic structures on Lie algebroids recovering, as particular cases, all the classical results and examples of hypersymplectic structures on manifolds. We prove a 1-1 correspondence theorem between hypersymplectic structures and (pseudo-)hyperk\"{a}hler structures. We show that the hypersymplectic framework is very rich in already known compatible pairs of tensors such as Poisson-Nijenhuis, $\Omega N$ and $P \Omega$ structures. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/44529 http://hdl.handle.net/10316/44529 https://doi.org/10.1142/S0129055X13430034 https://doi.org/10.1142/S0129055X13430034 |
url |
http://hdl.handle.net/10316/44529 https://doi.org/10.1142/S0129055X13430034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.worldscientific.com/doi/abs/10.1142/S0129055X13430034 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
World Scientific Publishing |
publisher.none.fl_str_mv |
World Scientific Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821113729024 |