Hyperstructures on Lie algebroids

Detalhes bibliográficos
Autor(a) principal: Antunes, Paulo
Data de Publicação: 2013
Outros Autores: Nunes da Costa, Joana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/44529
https://doi.org/10.1142/S0129055X13430034
Resumo: We define hypersymplectic structures on Lie algebroids recovering, as particular cases, all the classical results and examples of hypersymplectic structures on manifolds. We prove a 1-1 correspondence theorem between hypersymplectic structures and (pseudo-)hyperk\"{a}hler structures. We show that the hypersymplectic framework is very rich in already known compatible pairs of tensors such as Poisson-Nijenhuis, $\Omega N$ and $P \Omega$ structures.
id RCAP_92da6f26123552446f4a3ba396865827
oai_identifier_str oai:estudogeral.uc.pt:10316/44529
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hyperstructures on Lie algebroidsWe define hypersymplectic structures on Lie algebroids recovering, as particular cases, all the classical results and examples of hypersymplectic structures on manifolds. We prove a 1-1 correspondence theorem between hypersymplectic structures and (pseudo-)hyperk\"{a}hler structures. We show that the hypersymplectic framework is very rich in already known compatible pairs of tensors such as Poisson-Nijenhuis, $\Omega N$ and $P \Omega$ structures.World Scientific Publishing2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44529http://hdl.handle.net/10316/44529https://doi.org/10.1142/S0129055X13430034https://doi.org/10.1142/S0129055X13430034enghttp://www.worldscientific.com/doi/abs/10.1142/S0129055X13430034Antunes, PauloNunes da Costa, Joanainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:20Zoai:estudogeral.uc.pt:10316/44529Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:24.036721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hyperstructures on Lie algebroids
title Hyperstructures on Lie algebroids
spellingShingle Hyperstructures on Lie algebroids
Antunes, Paulo
title_short Hyperstructures on Lie algebroids
title_full Hyperstructures on Lie algebroids
title_fullStr Hyperstructures on Lie algebroids
title_full_unstemmed Hyperstructures on Lie algebroids
title_sort Hyperstructures on Lie algebroids
author Antunes, Paulo
author_facet Antunes, Paulo
Nunes da Costa, Joana
author_role author
author2 Nunes da Costa, Joana
author2_role author
dc.contributor.author.fl_str_mv Antunes, Paulo
Nunes da Costa, Joana
description We define hypersymplectic structures on Lie algebroids recovering, as particular cases, all the classical results and examples of hypersymplectic structures on manifolds. We prove a 1-1 correspondence theorem between hypersymplectic structures and (pseudo-)hyperk\"{a}hler structures. We show that the hypersymplectic framework is very rich in already known compatible pairs of tensors such as Poisson-Nijenhuis, $\Omega N$ and $P \Omega$ structures.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/44529
http://hdl.handle.net/10316/44529
https://doi.org/10.1142/S0129055X13430034
https://doi.org/10.1142/S0129055X13430034
url http://hdl.handle.net/10316/44529
https://doi.org/10.1142/S0129055X13430034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.worldscientific.com/doi/abs/10.1142/S0129055X13430034
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv World Scientific Publishing
publisher.none.fl_str_mv World Scientific Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821113729024