A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/158002 |
Resumo: | Funding Information: The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the project PID2020-117954RB and the European Regional Development Fund and Junta de Andalucía for projects PY20-00870 and UPO-138516. This work could not have been done without the support and help of the Farmer’s Association of Baixo Alentejo and Francisco Palma during the whole project. Finally, the authors thank António Vieira Lima and Moragri S. A. for giving access to data. Publisher Copyright: © 2022 |
id |
RCAP_2395a6786486b47d39b8c081a5dbe0d6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/158002 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A new big data triclustering approach for extracting three-dimensional patterns in precision agricultureBig data triclusteringPrecision agricultureSpatio-temporal patternsComputer Science ApplicationsCognitive NeuroscienceArtificial IntelligenceFunding Information: The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the project PID2020-117954RB and the European Regional Development Fund and Junta de Andalucía for projects PY20-00870 and UPO-138516. This work could not have been done without the support and help of the Farmer’s Association of Baixo Alentejo and Francisco Palma during the whole project. Finally, the authors thank António Vieira Lima and Moragri S. A. for giving access to data. Publisher Copyright: © 2022Precision agriculture focuses on the development of site-specific harvest considering the variability of each crop area. Vegetation indices allow the study and delineation of different characteristics of each field zone, generally invisible to the naked-eye. This paper introduces a new big data triclustering approach based on evolutionary algorithms. The algorithm shows its capability to discover three-dimensional patterns on the basis of vegetation indices from vine crops. Different vegetation indices have been tested to find different patterns in the crops. The results reported using a vineyard crop located in Portugal depicts four areas with different moisture stress particularities that can lead to changes in the management of the vineyard. Furthermore, scalability studies have been performed, showing that the proposed algorithm is suitable for dealing with big datasets.UNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasRUNMelgar-García, LauraGutiérrez-Avilés, DavidGodinho, Maria TeresaEspada, RitaBrito, Isabel SofiaMartínez-Álvarez, FranciscoTroncoso, AliciaRubio-Escudero, Cristina2023-09-19T22:13:43Z2022-08-212022-08-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/158002eng0925-2312PURE: 51575411https://doi.org/10.1016/j.neucom.2021.06.101info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:40:16Zoai:run.unl.pt:10362/158002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:56.628138Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
title |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
spellingShingle |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture Melgar-García, Laura Big data triclustering Precision agriculture Spatio-temporal patterns Computer Science Applications Cognitive Neuroscience Artificial Intelligence |
title_short |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
title_full |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
title_fullStr |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
title_full_unstemmed |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
title_sort |
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture |
author |
Melgar-García, Laura |
author_facet |
Melgar-García, Laura Gutiérrez-Avilés, David Godinho, Maria Teresa Espada, Rita Brito, Isabel Sofia Martínez-Álvarez, Francisco Troncoso, Alicia Rubio-Escudero, Cristina |
author_role |
author |
author2 |
Gutiérrez-Avilés, David Godinho, Maria Teresa Espada, Rita Brito, Isabel Sofia Martínez-Álvarez, Francisco Troncoso, Alicia Rubio-Escudero, Cristina |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias CTS - Centro de Tecnologia e Sistemas RUN |
dc.contributor.author.fl_str_mv |
Melgar-García, Laura Gutiérrez-Avilés, David Godinho, Maria Teresa Espada, Rita Brito, Isabel Sofia Martínez-Álvarez, Francisco Troncoso, Alicia Rubio-Escudero, Cristina |
dc.subject.por.fl_str_mv |
Big data triclustering Precision agriculture Spatio-temporal patterns Computer Science Applications Cognitive Neuroscience Artificial Intelligence |
topic |
Big data triclustering Precision agriculture Spatio-temporal patterns Computer Science Applications Cognitive Neuroscience Artificial Intelligence |
description |
Funding Information: The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the project PID2020-117954RB and the European Regional Development Fund and Junta de Andalucía for projects PY20-00870 and UPO-138516. This work could not have been done without the support and help of the Farmer’s Association of Baixo Alentejo and Francisco Palma during the whole project. Finally, the authors thank António Vieira Lima and Moragri S. A. for giving access to data. Publisher Copyright: © 2022 |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-21 2022-08-21T00:00:00Z 2023-09-19T22:13:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/158002 |
url |
http://hdl.handle.net/10362/158002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0925-2312 PURE: 51575411 https://doi.org/10.1016/j.neucom.2021.06.101 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138153018163200 |