Discovering spatio-temporal patterns in precision agriculture based on triclustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/20.500.12207/5920 |
Resumo: | Agriculture has undergone some very important changes over the last few decades. The emergence and evolution of precision agriculture has allowed to move from the uniform site management to the site-specific management, with both economic and environmental advantages. However, to be implemented effectively, site-specific management requires within-field spatial variability to be well-known and characterized. In this paper, an algorithm that delineates within-field management zones in a maize plantation is introduced. The algorithm, based on triclustering, mines clusters from temporal remote sensing data. Data from maize crops in Alentejo, Portugal, have been used to assess the suitability of applying triclustering to discover patterns over time, that may eventually help farmers to improve their harvests. |
id |
RCAP_305dbfcf902c2d5b74e98862d870d0aa |
---|---|
oai_identifier_str |
oai:repositorio.ipbeja.pt:20.500.12207/5920 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Discovering spatio-temporal patterns in precision agriculture based on triclusteringTriclusteringSpatio-temporal patternsPrecision agricultureRemote sensingAgriculture has undergone some very important changes over the last few decades. The emergence and evolution of precision agriculture has allowed to move from the uniform site management to the site-specific management, with both economic and environmental advantages. However, to be implemented effectively, site-specific management requires within-field spatial variability to be well-known and characterized. In this paper, an algorithm that delineates within-field management zones in a maize plantation is introduced. The algorithm, based on triclustering, mines clusters from temporal remote sensing data. Data from maize crops in Alentejo, Portugal, have been used to assess the suitability of applying triclustering to discover patterns over time, that may eventually help farmers to improve their harvests.Springer, Cham2023-10-11T15:20:40Z2020-08-01T00:00:00Z2020-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://hdl.handle.net/20.500.12207/5920eng10.1007/978-3-030-57802-2_22Melgar-Garcia, LauraGodinho, TeresaEspada, RitaGutíerrez-Avilés, DavidBrito, Isabel SofiaMartínez-Alvarez, FranciscoTrancoso, AliciaRubio-Escudero, Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T08:17:15Zoai:repositorio.ipbeja.pt:20.500.12207/5920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:15.976571Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
title |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
spellingShingle |
Discovering spatio-temporal patterns in precision agriculture based on triclustering Melgar-Garcia, Laura Triclustering Spatio-temporal patterns Precision agriculture Remote sensing |
title_short |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
title_full |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
title_fullStr |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
title_full_unstemmed |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
title_sort |
Discovering spatio-temporal patterns in precision agriculture based on triclustering |
author |
Melgar-Garcia, Laura |
author_facet |
Melgar-Garcia, Laura Godinho, Teresa Espada, Rita Gutíerrez-Avilés, David Brito, Isabel Sofia Martínez-Alvarez, Francisco Trancoso, Alicia Rubio-Escudero, Cristina |
author_role |
author |
author2 |
Godinho, Teresa Espada, Rita Gutíerrez-Avilés, David Brito, Isabel Sofia Martínez-Alvarez, Francisco Trancoso, Alicia Rubio-Escudero, Cristina |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Melgar-Garcia, Laura Godinho, Teresa Espada, Rita Gutíerrez-Avilés, David Brito, Isabel Sofia Martínez-Alvarez, Francisco Trancoso, Alicia Rubio-Escudero, Cristina |
dc.subject.por.fl_str_mv |
Triclustering Spatio-temporal patterns Precision agriculture Remote sensing |
topic |
Triclustering Spatio-temporal patterns Precision agriculture Remote sensing |
description |
Agriculture has undergone some very important changes over the last few decades. The emergence and evolution of precision agriculture has allowed to move from the uniform site management to the site-specific management, with both economic and environmental advantages. However, to be implemented effectively, site-specific management requires within-field spatial variability to be well-known and characterized. In this paper, an algorithm that delineates within-field management zones in a maize plantation is introduced. The algorithm, based on triclustering, mines clusters from temporal remote sensing data. Data from maize crops in Alentejo, Portugal, have been used to assess the suitability of applying triclustering to discover patterns over time, that may eventually help farmers to improve their harvests. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-01T00:00:00Z 2020-08 2023-10-11T15:20:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.12207/5920 |
url |
https://hdl.handle.net/20.500.12207/5920 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1007/978-3-030-57802-2_22 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer, Cham |
publisher.none.fl_str_mv |
Springer, Cham |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133615735439360 |