Discovering spatio-temporal patterns in precision agriculture based on triclustering

Detalhes bibliográficos
Autor(a) principal: Melgar-Garcia, Laura
Data de Publicação: 2020
Outros Autores: Godinho, Teresa, Espada, Rita, Gutíerrez-Avilés, David, Brito, Isabel Sofia, Martínez-Alvarez, Francisco, Trancoso, Alicia, Rubio-Escudero, Cristina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/20.500.12207/5920
Resumo: Agriculture has undergone some very important changes over the last few decades. The emergence and evolution of precision agriculture has allowed to move from the uniform site management to the site-specific management, with both economic and environmental advantages. However, to be implemented effectively, site-specific management requires within-field spatial variability to be well-known and characterized. In this paper, an algorithm that delineates within-field management zones in a maize plantation is introduced. The algorithm, based on triclustering, mines clusters from temporal remote sensing data. Data from maize crops in Alentejo, Portugal, have been used to assess the suitability of applying triclustering to discover patterns over time, that may eventually help farmers to improve their harvests.
id RCAP_305dbfcf902c2d5b74e98862d870d0aa
oai_identifier_str oai:repositorio.ipbeja.pt:20.500.12207/5920
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Discovering spatio-temporal patterns in precision agriculture based on triclusteringTriclusteringSpatio-temporal patternsPrecision agricultureRemote sensingAgriculture has undergone some very important changes over the last few decades. The emergence and evolution of precision agriculture has allowed to move from the uniform site management to the site-specific management, with both economic and environmental advantages. However, to be implemented effectively, site-specific management requires within-field spatial variability to be well-known and characterized. In this paper, an algorithm that delineates within-field management zones in a maize plantation is introduced. The algorithm, based on triclustering, mines clusters from temporal remote sensing data. Data from maize crops in Alentejo, Portugal, have been used to assess the suitability of applying triclustering to discover patterns over time, that may eventually help farmers to improve their harvests.Springer, Cham2023-10-11T15:20:40Z2020-08-01T00:00:00Z2020-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://hdl.handle.net/20.500.12207/5920eng10.1007/978-3-030-57802-2_22Melgar-Garcia, LauraGodinho, TeresaEspada, RitaGutíerrez-Avilés, DavidBrito, Isabel SofiaMartínez-Alvarez, FranciscoTrancoso, AliciaRubio-Escudero, Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T08:17:15Zoai:repositorio.ipbeja.pt:20.500.12207/5920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:15.976571Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Discovering spatio-temporal patterns in precision agriculture based on triclustering
title Discovering spatio-temporal patterns in precision agriculture based on triclustering
spellingShingle Discovering spatio-temporal patterns in precision agriculture based on triclustering
Melgar-Garcia, Laura
Triclustering
Spatio-temporal patterns
Precision agriculture
Remote sensing
title_short Discovering spatio-temporal patterns in precision agriculture based on triclustering
title_full Discovering spatio-temporal patterns in precision agriculture based on triclustering
title_fullStr Discovering spatio-temporal patterns in precision agriculture based on triclustering
title_full_unstemmed Discovering spatio-temporal patterns in precision agriculture based on triclustering
title_sort Discovering spatio-temporal patterns in precision agriculture based on triclustering
author Melgar-Garcia, Laura
author_facet Melgar-Garcia, Laura
Godinho, Teresa
Espada, Rita
Gutíerrez-Avilés, David
Brito, Isabel Sofia
Martínez-Alvarez, Francisco
Trancoso, Alicia
Rubio-Escudero, Cristina
author_role author
author2 Godinho, Teresa
Espada, Rita
Gutíerrez-Avilés, David
Brito, Isabel Sofia
Martínez-Alvarez, Francisco
Trancoso, Alicia
Rubio-Escudero, Cristina
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Melgar-Garcia, Laura
Godinho, Teresa
Espada, Rita
Gutíerrez-Avilés, David
Brito, Isabel Sofia
Martínez-Alvarez, Francisco
Trancoso, Alicia
Rubio-Escudero, Cristina
dc.subject.por.fl_str_mv Triclustering
Spatio-temporal patterns
Precision agriculture
Remote sensing
topic Triclustering
Spatio-temporal patterns
Precision agriculture
Remote sensing
description Agriculture has undergone some very important changes over the last few decades. The emergence and evolution of precision agriculture has allowed to move from the uniform site management to the site-specific management, with both economic and environmental advantages. However, to be implemented effectively, site-specific management requires within-field spatial variability to be well-known and characterized. In this paper, an algorithm that delineates within-field management zones in a maize plantation is introduced. The algorithm, based on triclustering, mines clusters from temporal remote sensing data. Data from maize crops in Alentejo, Portugal, have been used to assess the suitability of applying triclustering to discover patterns over time, that may eventually help farmers to improve their harvests.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-01T00:00:00Z
2020-08
2023-10-11T15:20:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.12207/5920
url https://hdl.handle.net/20.500.12207/5920
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-030-57802-2_22
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer, Cham
publisher.none.fl_str_mv Springer, Cham
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133615735439360