Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/144387 |
Resumo: | Bone tissue damage is a common health issue that tends to increase in severity with age and the existence of other underlying conditions. Nowadays the common practice for treatments requires insertion and extraction surgeries of supports such as screws and plates, adding to the risk of a second surgery. Functional biomaterials intend to eliminate this added risk while also enhancing the functionality of implants, either by accelerat- ing the regenerative process or augmenting other useful properties. Piezoelectricity is present in bone tissue and plays a major role in the regenerative process of fractures and healing of eventual defects, using Polyvinylidene Fluoride (PVDF) and Barium Titanate (BaTiO3) both well-known biomaterials with a piezoelectric phase being a polymer and a ceramic respectively. These types of materials have potential applications for hard tis- sue regeneration and engineering, as the piezoelectric effects stimulate osteogeneses and osseointegration. This project developed piezoelectric PVDF membranes embedded with piezoelectric BaTiO3 particles as a tool for taking advantage of the piezoelectric mechanism inherent in bone tissue regeneration to accelerate the healing process. To achieve this, the mem- branes were produced by electrospinning onto a rotating drum to promote the alignment of fibers, and commercially available particles were used while attempting a novel sol-gel synthesis method using barium acetate and titanium(III) chloride as precursors while using cell culture medium to stabilize particle growth. Electrospinning was the chosen method for producing the membranes, as it allows the formation of a structure favoring cell growth and adhesion and promotes the formation of the piezoelectric phase and polar- iation of PVDF. After defining the best parameters for producing pure PVDF membranes, the process was repeated for the BaTiO3 embedded membranes. The membranes and particles were characterized by severeal techniques, as well as the precursor materials, and the bioactivity and cytotoxicity of the final membranes were also investigated. |
id |
RCAP_23a0980bc11a2fb04885616e1ddcd756 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/144387 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particlesPiezoelectricityBone Tissue RegenerationPolymeric MembranePVDFBa- TiO3Barium TitanateDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaBone tissue damage is a common health issue that tends to increase in severity with age and the existence of other underlying conditions. Nowadays the common practice for treatments requires insertion and extraction surgeries of supports such as screws and plates, adding to the risk of a second surgery. Functional biomaterials intend to eliminate this added risk while also enhancing the functionality of implants, either by accelerat- ing the regenerative process or augmenting other useful properties. Piezoelectricity is present in bone tissue and plays a major role in the regenerative process of fractures and healing of eventual defects, using Polyvinylidene Fluoride (PVDF) and Barium Titanate (BaTiO3) both well-known biomaterials with a piezoelectric phase being a polymer and a ceramic respectively. These types of materials have potential applications for hard tis- sue regeneration and engineering, as the piezoelectric effects stimulate osteogeneses and osseointegration. This project developed piezoelectric PVDF membranes embedded with piezoelectric BaTiO3 particles as a tool for taking advantage of the piezoelectric mechanism inherent in bone tissue regeneration to accelerate the healing process. To achieve this, the mem- branes were produced by electrospinning onto a rotating drum to promote the alignment of fibers, and commercially available particles were used while attempting a novel sol-gel synthesis method using barium acetate and titanium(III) chloride as precursors while using cell culture medium to stabilize particle growth. Electrospinning was the chosen method for producing the membranes, as it allows the formation of a structure favoring cell growth and adhesion and promotes the formation of the piezoelectric phase and polar- iation of PVDF. After defining the best parameters for producing pure PVDF membranes, the process was repeated for the BaTiO3 embedded membranes. The membranes and particles were characterized by severeal techniques, as well as the precursor materials, and the bioactivity and cytotoxicity of the final membranes were also investigated.O dano ao tecido ósseo é um problema de saúde comum que tende a agravar com a idade e existência de outras condições subjacentes. Atualmente a prática comum de tratamentos exige cirurgias de inserção e extração de suportes como parafusos e placas, aumentando o risco com esta segunda cirurgia. Os biomateriais funcionais pretendem eliminar este risco acrescido enquanto melhoram a funcionalidade dos implantes, quer acelerando o processo regenerativo quer aumentando outras propriedades úteis. A pi- ezoeletricidade está presente no tecido ósseo e desempenha um papel importante no processo regenerativo de fraturas e cicatrização de eventuais defeitos, utilizando PVDF e Titanato de Bário (BaTiO3) ambos biomateriais bem conhecidos com uma fase piezoelé- trica ssendo materiais poliméricos e cerâmicos respectivamente. Estes tipo de materiais tem potencial para aplicações na regeneração e engenharia de tecidos duros, devido ao efeitos piezoelétrico estimular a osteogênese e a osseointegração. Neste projeto foram desenvolvidas membranas piezoelétricas de PVDF com incorpo- ração de partículas piezoelétricas de BaTiO3 como uma forma de tirar partido do meca- nismo piezoelétrico inerente à regeneração do tecido ósseo para acelerar o processo de cicatrização. Para conseguir isto, as membranas foram produzidas por eletrofiação com um tambor rotativo para promover o alinhamento de fibras e incorporadas com partículas disponiveis comericalmente enquanto se tentou um método de síntese sol-gel inovador utilizando acetato de bário e cloreto de titânio(III) como precursores e utilizando meio de cultura celular para estabilizar o crescimento de partículas. A eletrofiação foi o método escolhido para a produção das membranas, pois permite a formação de uma estrutura que favorece o crescimento e adesão celular e promove a formação da fase piezoelétrica do PVDF. Após definir os melhores parâmetros para a produção de membranas de PVDF puro, o processo foi repetido para as membranas embutidas com BaTiO3. As membranas e partículas foram caracterizadas por várias técnicas, assim como os materiais precursores, e a bioatividade e citotoxicidade das membranas finais foi também averiguada.Lança, Maria CarmoBorges, JoãoRUNAlmeida, Sérgio Daniel Inácio2022-09-29T18:25:42Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/144387enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:23:50Zoai:run.unl.pt:10362/144387Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:28.373132Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
title |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
spellingShingle |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles Almeida, Sérgio Daniel Inácio Piezoelectricity Bone Tissue Regeneration Polymeric Membrane PVDF Ba- TiO3 Barium Titanate Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
title_short |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
title_full |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
title_fullStr |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
title_full_unstemmed |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
title_sort |
Enhanced bioactivity of electrospun piezoelectric membranes with embedded micro and nano particles |
author |
Almeida, Sérgio Daniel Inácio |
author_facet |
Almeida, Sérgio Daniel Inácio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lança, Maria Carmo Borges, João RUN |
dc.contributor.author.fl_str_mv |
Almeida, Sérgio Daniel Inácio |
dc.subject.por.fl_str_mv |
Piezoelectricity Bone Tissue Regeneration Polymeric Membrane PVDF Ba- TiO3 Barium Titanate Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
topic |
Piezoelectricity Bone Tissue Regeneration Polymeric Membrane PVDF Ba- TiO3 Barium Titanate Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
description |
Bone tissue damage is a common health issue that tends to increase in severity with age and the existence of other underlying conditions. Nowadays the common practice for treatments requires insertion and extraction surgeries of supports such as screws and plates, adding to the risk of a second surgery. Functional biomaterials intend to eliminate this added risk while also enhancing the functionality of implants, either by accelerat- ing the regenerative process or augmenting other useful properties. Piezoelectricity is present in bone tissue and plays a major role in the regenerative process of fractures and healing of eventual defects, using Polyvinylidene Fluoride (PVDF) and Barium Titanate (BaTiO3) both well-known biomaterials with a piezoelectric phase being a polymer and a ceramic respectively. These types of materials have potential applications for hard tis- sue regeneration and engineering, as the piezoelectric effects stimulate osteogeneses and osseointegration. This project developed piezoelectric PVDF membranes embedded with piezoelectric BaTiO3 particles as a tool for taking advantage of the piezoelectric mechanism inherent in bone tissue regeneration to accelerate the healing process. To achieve this, the mem- branes were produced by electrospinning onto a rotating drum to promote the alignment of fibers, and commercially available particles were used while attempting a novel sol-gel synthesis method using barium acetate and titanium(III) chloride as precursors while using cell culture medium to stabilize particle growth. Electrospinning was the chosen method for producing the membranes, as it allows the formation of a structure favoring cell growth and adhesion and promotes the formation of the piezoelectric phase and polar- iation of PVDF. After defining the best parameters for producing pure PVDF membranes, the process was repeated for the BaTiO3 embedded membranes. The membranes and particles were characterized by severeal techniques, as well as the precursor materials, and the bioactivity and cytotoxicity of the final membranes were also investigated. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-29T18:25:42Z 2022-06 2022-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/144387 |
url |
http://hdl.handle.net/10362/144387 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138108180004864 |