On the supercritical KDV equation with time-oscillating nonlinearity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/21428 |
Resumo: | For the initial value problem (IVP) associated to the generalized Korteweg-de Vries (gKdV) equation with supercritical nonlinearity, \begin{equation*} u_{t}+\partial_x^3u+\partial_x(u^{k+1}) =0,\qquad k\geq 5, \end{equation*} numerical evidence [Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R.: Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 351, 107–164 (1995) ] shows that, there are initial data $\phi\in H^1(\mathbb{R})$ such that the corresponding solution may blow-up in finite time. Also, with the evidence from numerical simulation [Abdullaev F.K., Caputo J.G., Kraenkel R.A., Malomed B.A.: Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A 67, 012605 (2003) and Konotop V.V., Pacciani P.: Collapse of solutions of the nonlinear Schrödinger equation with a time dependent nonlinearity: application to the Bose–Einstein condensates. Phys. Rev. Lett. 94, 240405 (2005) ], it has been claimed that a periodic time dependent coefficient in the nonlinearity would disturb the blow-up solution, either accelerating or delaying it. In this work, we investigate the IVP associated to the gKdV equation \begin{equation*} u_{t}+\partial_x^3u+g(\omega t)\partial_x(u^{k+1}) =0, \end{equation*} where $g$ is a periodic function and $k\geq 5$ is an integer. We prove that, for given initial data $\phi \in H^1(\mathbb{R})$, as $|\omega|\to \infty$, the solution $u_{\omega}$ converges to the solution $U$ of the initial value problem associated to \begin{equation*} U_{t}+\partial_x^3U+m(g)\partial_x(U^{k+1}) =0, \end{equation*} with the same initial data, where $m(g)$ is the average of the periodic function $g$. Moreover, if the solution $U$ is global and satisfies $\|U\|_{L_x^5L_t^{10}}<\infty$, then we prove that the solution $u_{\omega}$ is also global provided $|\omega|$ is sufficiently large. |
id |
RCAP_267ff569754963993d53319609de2e2c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/21428 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the supercritical KDV equation with time-oscillating nonlinearityKorteweg-de vries equationCauchy problemLocal and global well-posednessScience & TechnologyFor the initial value problem (IVP) associated to the generalized Korteweg-de Vries (gKdV) equation with supercritical nonlinearity, \begin{equation*} u_{t}+\partial_x^3u+\partial_x(u^{k+1}) =0,\qquad k\geq 5, \end{equation*} numerical evidence [Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R.: Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 351, 107–164 (1995) ] shows that, there are initial data $\phi\in H^1(\mathbb{R})$ such that the corresponding solution may blow-up in finite time. Also, with the evidence from numerical simulation [Abdullaev F.K., Caputo J.G., Kraenkel R.A., Malomed B.A.: Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A 67, 012605 (2003) and Konotop V.V., Pacciani P.: Collapse of solutions of the nonlinear Schrödinger equation with a time dependent nonlinearity: application to the Bose–Einstein condensates. Phys. Rev. Lett. 94, 240405 (2005) ], it has been claimed that a periodic time dependent coefficient in the nonlinearity would disturb the blow-up solution, either accelerating or delaying it. In this work, we investigate the IVP associated to the gKdV equation \begin{equation*} u_{t}+\partial_x^3u+g(\omega t)\partial_x(u^{k+1}) =0, \end{equation*} where $g$ is a periodic function and $k\geq 5$ is an integer. We prove that, for given initial data $\phi \in H^1(\mathbb{R})$, as $|\omega|\to \infty$, the solution $u_{\omega}$ converges to the solution $U$ of the initial value problem associated to \begin{equation*} U_{t}+\partial_x^3U+m(g)\partial_x(U^{k+1}) =0, \end{equation*} with the same initial data, where $m(g)$ is the average of the periodic function $g$. Moreover, if the solution $U$ is global and satisfies $\|U\|_{L_x^5L_t^{10}}<\infty$, then we prove that the solution $u_{\omega}$ is also global provided $|\omega|$ is sufficiently large.M. P. was partially supported by the Research Center of Mathematics of the University of Minho, Portugal through the FCT Pluriannual Funding Program, and through the project PTDC/MAT/109844/2009, and M. S. was partially supported by FAPESP Brazil.SpringerUniversidade do MinhoPanthee, MahendraScialom, Marcia20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/21428eng1021-972210.1007/s00030-012-0204-zhttp://link.springer.com/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:11:56Zoai:repositorium.sdum.uminho.pt:1822/21428Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:03:46.843510Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the supercritical KDV equation with time-oscillating nonlinearity |
title |
On the supercritical KDV equation with time-oscillating nonlinearity |
spellingShingle |
On the supercritical KDV equation with time-oscillating nonlinearity Panthee, Mahendra Korteweg-de vries equation Cauchy problem Local and global well-posedness Science & Technology |
title_short |
On the supercritical KDV equation with time-oscillating nonlinearity |
title_full |
On the supercritical KDV equation with time-oscillating nonlinearity |
title_fullStr |
On the supercritical KDV equation with time-oscillating nonlinearity |
title_full_unstemmed |
On the supercritical KDV equation with time-oscillating nonlinearity |
title_sort |
On the supercritical KDV equation with time-oscillating nonlinearity |
author |
Panthee, Mahendra |
author_facet |
Panthee, Mahendra Scialom, Marcia |
author_role |
author |
author2 |
Scialom, Marcia |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Panthee, Mahendra Scialom, Marcia |
dc.subject.por.fl_str_mv |
Korteweg-de vries equation Cauchy problem Local and global well-posedness Science & Technology |
topic |
Korteweg-de vries equation Cauchy problem Local and global well-posedness Science & Technology |
description |
For the initial value problem (IVP) associated to the generalized Korteweg-de Vries (gKdV) equation with supercritical nonlinearity, \begin{equation*} u_{t}+\partial_x^3u+\partial_x(u^{k+1}) =0,\qquad k\geq 5, \end{equation*} numerical evidence [Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R.: Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 351, 107–164 (1995) ] shows that, there are initial data $\phi\in H^1(\mathbb{R})$ such that the corresponding solution may blow-up in finite time. Also, with the evidence from numerical simulation [Abdullaev F.K., Caputo J.G., Kraenkel R.A., Malomed B.A.: Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A 67, 012605 (2003) and Konotop V.V., Pacciani P.: Collapse of solutions of the nonlinear Schrödinger equation with a time dependent nonlinearity: application to the Bose–Einstein condensates. Phys. Rev. Lett. 94, 240405 (2005) ], it has been claimed that a periodic time dependent coefficient in the nonlinearity would disturb the blow-up solution, either accelerating or delaying it. In this work, we investigate the IVP associated to the gKdV equation \begin{equation*} u_{t}+\partial_x^3u+g(\omega t)\partial_x(u^{k+1}) =0, \end{equation*} where $g$ is a periodic function and $k\geq 5$ is an integer. We prove that, for given initial data $\phi \in H^1(\mathbb{R})$, as $|\omega|\to \infty$, the solution $u_{\omega}$ converges to the solution $U$ of the initial value problem associated to \begin{equation*} U_{t}+\partial_x^3U+m(g)\partial_x(U^{k+1}) =0, \end{equation*} with the same initial data, where $m(g)$ is the average of the periodic function $g$. Moreover, if the solution $U$ is global and satisfies $\|U\|_{L_x^5L_t^{10}}<\infty$, then we prove that the solution $u_{\omega}$ is also global provided $|\omega|$ is sufficiently large. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/21428 |
url |
http://hdl.handle.net/1822/21428 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1021-9722 10.1007/s00030-012-0204-z http://link.springer.com/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132445458563072 |