Indicators of Economic Crises : A Data-Driven Clustering Approach

Detalhes bibliográficos
Autor(a) principal: Göbel, Maximilian
Data de Publicação: 2020
Outros Autores: Araújo, Tanya
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/20106
Resumo: The determination of reliable early-warning indicators of economic crises is a hot topic in economic sciences. Pinning down recurring patterns or combinations of macroeconomic indicators is indispensable for adequate policy adjustments to prevent a looming crisis. We investigate the ability of several macroeconomic variables telling crisis countries apart from non-crisis economies. We introduce a selfcalibrated clustering-algorithm, which accounts for both similarity and dissimilarity in macroeconomic fundamentals across countries. Furthermore, imposing a desired community structure, we allow the data to decide by itself, which combination of indicators would have most accurately foreseen the exogeneously defined network topology. We quantitatively evaluate the degree of matching between the data-generated clustering and the desired community-structure.
id RCAP_26f79926eba93cd9b9bf26c2c30c735e
oai_identifier_str oai:www.repository.utl.pt:10400.5/20106
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Indicators of Economic Crises : A Data-Driven Clustering ApproachEarly-Warning ModelsCrisis PredictionMacroeconomic DynamicsNetwork AnalysisCommunity StructureGreat RecessionClustering AlgorithmThe determination of reliable early-warning indicators of economic crises is a hot topic in economic sciences. Pinning down recurring patterns or combinations of macroeconomic indicators is indispensable for adequate policy adjustments to prevent a looming crisis. We investigate the ability of several macroeconomic variables telling crisis countries apart from non-crisis economies. We introduce a selfcalibrated clustering-algorithm, which accounts for both similarity and dissimilarity in macroeconomic fundamentals across countries. Furthermore, imposing a desired community structure, we allow the data to decide by itself, which combination of indicators would have most accurately foreseen the exogeneously defined network topology. We quantitatively evaluate the degree of matching between the data-generated clustering and the desired community-structure.ISEG - REM - Research in Economics and MathematicsRepositório da Universidade de LisboaGöbel, MaximilianAraújo, Tanya2020-05-25T16:58:29Z2020-052020-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/20106engGöbel, Maximilian e Tanya Araújo (2020). "Indicators of Economic Crises : A Data-Driven Clustering Approach". Instituto Superior de Economia e Gestão – REM Working paper nº 0128 – 20202184-108Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:49:33Zoai:www.repository.utl.pt:10400.5/20106Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:04:54.809351Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Indicators of Economic Crises : A Data-Driven Clustering Approach
title Indicators of Economic Crises : A Data-Driven Clustering Approach
spellingShingle Indicators of Economic Crises : A Data-Driven Clustering Approach
Göbel, Maximilian
Early-Warning Models
Crisis Prediction
Macroeconomic Dynamics
Network Analysis
Community Structure
Great Recession
Clustering Algorithm
title_short Indicators of Economic Crises : A Data-Driven Clustering Approach
title_full Indicators of Economic Crises : A Data-Driven Clustering Approach
title_fullStr Indicators of Economic Crises : A Data-Driven Clustering Approach
title_full_unstemmed Indicators of Economic Crises : A Data-Driven Clustering Approach
title_sort Indicators of Economic Crises : A Data-Driven Clustering Approach
author Göbel, Maximilian
author_facet Göbel, Maximilian
Araújo, Tanya
author_role author
author2 Araújo, Tanya
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Göbel, Maximilian
Araújo, Tanya
dc.subject.por.fl_str_mv Early-Warning Models
Crisis Prediction
Macroeconomic Dynamics
Network Analysis
Community Structure
Great Recession
Clustering Algorithm
topic Early-Warning Models
Crisis Prediction
Macroeconomic Dynamics
Network Analysis
Community Structure
Great Recession
Clustering Algorithm
description The determination of reliable early-warning indicators of economic crises is a hot topic in economic sciences. Pinning down recurring patterns or combinations of macroeconomic indicators is indispensable for adequate policy adjustments to prevent a looming crisis. We investigate the ability of several macroeconomic variables telling crisis countries apart from non-crisis economies. We introduce a selfcalibrated clustering-algorithm, which accounts for both similarity and dissimilarity in macroeconomic fundamentals across countries. Furthermore, imposing a desired community structure, we allow the data to decide by itself, which combination of indicators would have most accurately foreseen the exogeneously defined network topology. We quantitatively evaluate the degree of matching between the data-generated clustering and the desired community-structure.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-25T16:58:29Z
2020-05
2020-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/20106
url http://hdl.handle.net/10400.5/20106
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Göbel, Maximilian e Tanya Araújo (2020). "Indicators of Economic Crises : A Data-Driven Clustering Approach". Instituto Superior de Economia e Gestão – REM Working paper nº 0128 – 2020
2184-108X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ISEG - REM - Research in Economics and Mathematics
publisher.none.fl_str_mv ISEG - REM - Research in Economics and Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817553510712999936