Indicators of Economic Crises : A Data-Driven Clustering Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/20106 |
Resumo: | The determination of reliable early-warning indicators of economic crises is a hot topic in economic sciences. Pinning down recurring patterns or combinations of macroeconomic indicators is indispensable for adequate policy adjustments to prevent a looming crisis. We investigate the ability of several macroeconomic variables telling crisis countries apart from non-crisis economies. We introduce a selfcalibrated clustering-algorithm, which accounts for both similarity and dissimilarity in macroeconomic fundamentals across countries. Furthermore, imposing a desired community structure, we allow the data to decide by itself, which combination of indicators would have most accurately foreseen the exogeneously defined network topology. We quantitatively evaluate the degree of matching between the data-generated clustering and the desired community-structure. |
id |
RCAP_cb1bd0bfa94f6b39718f636608616e85 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10400.5/20106 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Indicators of Economic Crises : A Data-Driven Clustering ApproachEarly-Warning ModelsCrisis PredictionMacroeconomic DynamicsNetwork AnalysisCommunity StructureGreat RecessionClustering AlgorithmThe determination of reliable early-warning indicators of economic crises is a hot topic in economic sciences. Pinning down recurring patterns or combinations of macroeconomic indicators is indispensable for adequate policy adjustments to prevent a looming crisis. We investigate the ability of several macroeconomic variables telling crisis countries apart from non-crisis economies. We introduce a selfcalibrated clustering-algorithm, which accounts for both similarity and dissimilarity in macroeconomic fundamentals across countries. Furthermore, imposing a desired community structure, we allow the data to decide by itself, which combination of indicators would have most accurately foreseen the exogeneously defined network topology. We quantitatively evaluate the degree of matching between the data-generated clustering and the desired community-structure.ISEG - REM - Research in Economics and MathematicsRepositório da Universidade de LisboaGöbel, MaximilianAraújo, Tanya2020-05-25T16:58:29Z2020-052020-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/20106engGöbel, Maximilian e Tanya Araújo (2020). "Indicators of Economic Crises : A Data-Driven Clustering Approach". Instituto Superior de Economia e Gestão – REM Working paper nº 0128 – 20202184-108Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-20T19:31:38Zoai:repositorio.ul.pt:10400.5/20106Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-20T19:31:38Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
title |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
spellingShingle |
Indicators of Economic Crises : A Data-Driven Clustering Approach Göbel, Maximilian Early-Warning Models Crisis Prediction Macroeconomic Dynamics Network Analysis Community Structure Great Recession Clustering Algorithm |
title_short |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
title_full |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
title_fullStr |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
title_full_unstemmed |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
title_sort |
Indicators of Economic Crises : A Data-Driven Clustering Approach |
author |
Göbel, Maximilian |
author_facet |
Göbel, Maximilian Araújo, Tanya |
author_role |
author |
author2 |
Araújo, Tanya |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Göbel, Maximilian Araújo, Tanya |
dc.subject.por.fl_str_mv |
Early-Warning Models Crisis Prediction Macroeconomic Dynamics Network Analysis Community Structure Great Recession Clustering Algorithm |
topic |
Early-Warning Models Crisis Prediction Macroeconomic Dynamics Network Analysis Community Structure Great Recession Clustering Algorithm |
description |
The determination of reliable early-warning indicators of economic crises is a hot topic in economic sciences. Pinning down recurring patterns or combinations of macroeconomic indicators is indispensable for adequate policy adjustments to prevent a looming crisis. We investigate the ability of several macroeconomic variables telling crisis countries apart from non-crisis economies. We introduce a selfcalibrated clustering-algorithm, which accounts for both similarity and dissimilarity in macroeconomic fundamentals across countries. Furthermore, imposing a desired community structure, we allow the data to decide by itself, which combination of indicators would have most accurately foreseen the exogeneously defined network topology. We quantitatively evaluate the degree of matching between the data-generated clustering and the desired community-structure. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-25T16:58:29Z 2020-05 2020-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/20106 |
url |
http://hdl.handle.net/10400.5/20106 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Göbel, Maximilian e Tanya Araújo (2020). "Indicators of Economic Crises : A Data-Driven Clustering Approach". Instituto Superior de Economia e Gestão – REM Working paper nº 0128 – 2020 2184-108X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
publisher.none.fl_str_mv |
ISEG - REM - Research in Economics and Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549536979058688 |