New transistor behavioral model formulation suitable for Doherty PA design

Detalhes bibliográficos
Autor(a) principal: Louro, João
Data de Publicação: 2021
Outros Autores: Belchior, Catarina, Barros, Diogo R., Barradas, Filipe M., Nunes, Luís C., Cabral, Pedro M., Pedro, José C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40308
Resumo: This work presents a new artificial neural network (ANN) model formulation for RF high-power transistors which includes the S-parameters of the active device. This improves the small-signal extrapolation capability, and the OFF-state impedance approximation, making it suitable for Doherty power amplifier (DPA) design. This extrapolation capability plays a key role in the correct Doherty load modulation prediction, since, at low power levels, the peaking PA is subjected to active loads that cannot be synthetized with a passive load-pull system, forcing the model to extrapolate. Thus, the proposed model formulation is able to solve the issues that are normally observed when ANN-based models are used in complex PA architectures as the Doherty PA. To validate the proposed behavioral model, a 700-W asymmetrical LDMOS DPA, centered at 1.84 GHz, was simulated and measured.
id RCAP_2950034f6b306ba484c66700afa6f0f6
oai_identifier_str oai:ria.ua.pt:10773/40308
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New transistor behavioral model formulation suitable for Doherty PA designArtificial neural network (ANN)Behavioral modelDohertyLoad modulationPassive load-pullPower amplifierThis work presents a new artificial neural network (ANN) model formulation for RF high-power transistors which includes the S-parameters of the active device. This improves the small-signal extrapolation capability, and the OFF-state impedance approximation, making it suitable for Doherty power amplifier (DPA) design. This extrapolation capability plays a key role in the correct Doherty load modulation prediction, since, at low power levels, the peaking PA is subjected to active loads that cannot be synthetized with a passive load-pull system, forcing the model to extrapolate. Thus, the proposed model formulation is able to solve the issues that are normally observed when ANN-based models are used in complex PA architectures as the Doherty PA. To validate the proposed behavioral model, a 700-W asymmetrical LDMOS DPA, centered at 1.84 GHz, was simulated and measured.Institute of Electrical and Electronics Engineers2024-01-26T19:07:50Z2021-04-01T00:00:00Z2021-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40308eng0018-948010.1109/TMTT.2021.3054645Louro, JoãoBelchior, CatarinaBarros, Diogo R.Barradas, Filipe M.Nunes, Luís C.Cabral, Pedro M.Pedro, José C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:30Zoai:ria.ua.pt:10773/40308Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:13.359062Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New transistor behavioral model formulation suitable for Doherty PA design
title New transistor behavioral model formulation suitable for Doherty PA design
spellingShingle New transistor behavioral model formulation suitable for Doherty PA design
Louro, João
Artificial neural network (ANN)
Behavioral model
Doherty
Load modulation
Passive load-pull
Power amplifier
title_short New transistor behavioral model formulation suitable for Doherty PA design
title_full New transistor behavioral model formulation suitable for Doherty PA design
title_fullStr New transistor behavioral model formulation suitable for Doherty PA design
title_full_unstemmed New transistor behavioral model formulation suitable for Doherty PA design
title_sort New transistor behavioral model formulation suitable for Doherty PA design
author Louro, João
author_facet Louro, João
Belchior, Catarina
Barros, Diogo R.
Barradas, Filipe M.
Nunes, Luís C.
Cabral, Pedro M.
Pedro, José C.
author_role author
author2 Belchior, Catarina
Barros, Diogo R.
Barradas, Filipe M.
Nunes, Luís C.
Cabral, Pedro M.
Pedro, José C.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Louro, João
Belchior, Catarina
Barros, Diogo R.
Barradas, Filipe M.
Nunes, Luís C.
Cabral, Pedro M.
Pedro, José C.
dc.subject.por.fl_str_mv Artificial neural network (ANN)
Behavioral model
Doherty
Load modulation
Passive load-pull
Power amplifier
topic Artificial neural network (ANN)
Behavioral model
Doherty
Load modulation
Passive load-pull
Power amplifier
description This work presents a new artificial neural network (ANN) model formulation for RF high-power transistors which includes the S-parameters of the active device. This improves the small-signal extrapolation capability, and the OFF-state impedance approximation, making it suitable for Doherty power amplifier (DPA) design. This extrapolation capability plays a key role in the correct Doherty load modulation prediction, since, at low power levels, the peaking PA is subjected to active loads that cannot be synthetized with a passive load-pull system, forcing the model to extrapolate. Thus, the proposed model formulation is able to solve the issues that are normally observed when ANN-based models are used in complex PA architectures as the Doherty PA. To validate the proposed behavioral model, a 700-W asymmetrical LDMOS DPA, centered at 1.84 GHz, was simulated and measured.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-01T00:00:00Z
2021-04
2024-01-26T19:07:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40308
url http://hdl.handle.net/10773/40308
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0018-9480
10.1109/TMTT.2021.3054645
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137751946231808