Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151452 |
Resumo: | The unknown primary carcinoma in head and neck cancer (HNC) is a rare disease in which cancer cells spread to lymph nodes in the upper neck, but the place where it began is unknown. The diagnostic protocol to identify the primary tumour location is challenging and invasive. In return, radiomics, a quick, low-cost, non-invasive and repeatable method, has been demonstrated in this dissertation to be a valuable tool for diagnosing the primary tumour location in these patients. The dataset analysed comprises 400 HNC patients with unknown primary carcinoma from the National Cancer Institution of Milano. The primary tumour sites already diag- nosed were Hypopharynx and Larynx (HL; n = 38), Oral Cavity (OC; n = 63), Oropharynx (OPh; n = 162) and Nasopharynx (NPh; n = 137). In total, 265 radiomic features (includ- ing shape and size, first-order, second-order, and wavelet features) were extracted from the cervical lymph nodes segmented in MRI images. The clinical information included sex, age and HPV status. Three workflows based on radiomics and machine learning methods were developed in this project. In radiomic features analysis, three correlation thresholds (0.75, 0.80, 0.85) to remove the highly correlated features and five distinctive feature selection meth- ods were assessed. The best results were achieved by the third workflow when clinical information was included in the feature set selected by Sequential Backward Selection and trained with a Linear Support Vector Machine classifier. The highest accuracies ob- tained in predicting each tumour location were 78.8% for HL, 75.4% for OC, 71.5% for OPh and 95.2% for NPh. The percentage of unclassified patients was 0.5%. The outcomes indicate that radiomics with machine learning techniques and clinical information hold the potential to predict the primary tumour site accurately. |
id |
RCAP_2b3b9fdc20f0d644380c040e95971e2a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151452 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using RadiomicsRadiomicsMachine learningHead and neck cancerUnknown primary squamous cell carcinomaMRIFeature selectionDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThe unknown primary carcinoma in head and neck cancer (HNC) is a rare disease in which cancer cells spread to lymph nodes in the upper neck, but the place where it began is unknown. The diagnostic protocol to identify the primary tumour location is challenging and invasive. In return, radiomics, a quick, low-cost, non-invasive and repeatable method, has been demonstrated in this dissertation to be a valuable tool for diagnosing the primary tumour location in these patients. The dataset analysed comprises 400 HNC patients with unknown primary carcinoma from the National Cancer Institution of Milano. The primary tumour sites already diag- nosed were Hypopharynx and Larynx (HL; n = 38), Oral Cavity (OC; n = 63), Oropharynx (OPh; n = 162) and Nasopharynx (NPh; n = 137). In total, 265 radiomic features (includ- ing shape and size, first-order, second-order, and wavelet features) were extracted from the cervical lymph nodes segmented in MRI images. The clinical information included sex, age and HPV status. Three workflows based on radiomics and machine learning methods were developed in this project. In radiomic features analysis, three correlation thresholds (0.75, 0.80, 0.85) to remove the highly correlated features and five distinctive feature selection meth- ods were assessed. The best results were achieved by the third workflow when clinical information was included in the feature set selected by Sequential Backward Selection and trained with a Linear Support Vector Machine classifier. The highest accuracies ob- tained in predicting each tumour location were 78.8% for HL, 75.4% for OC, 71.5% for OPh and 95.2% for NPh. The percentage of unclassified patients was 0.5%. The outcomes indicate that radiomics with machine learning techniques and clinical information hold the potential to predict the primary tumour site accurately.O carcinoma de tumor primário desconhecido no cancro da cabeça e do pescoço (CCP) é uma doença rara em que as células cancerígenas se espalham para os gânglios linfáticos do pescoço, mas o local onde o tumor se inicia é desconhecido. O protocolo padrão para diagnosticar o tumor primário é desafiador e invasivo. Em contrapartida, a radiómica, sendo um método rápido, de baixo custo e não invasivo, demonstrou-se neste projeto ser uma ferramenta valiosa para a localização do tumor primário nesses pacientes. O conjunto de dados analisado inclui 400 pacientes do CCP com carcinoma primá- rio desconhecido do Instituto Nacional do Cancro de Milão. Os tumores primários, já diagnosticados, foram Hipofaringe e Laringe (HL; n = 38), Cavidade Oral (CO; n = 63), Orofaringe (Oro; n = 162) e Nasofaringe (Naso; n = 137). No total, 265 características radiómicas (incluindo a forma e tamanho, características de primeira ordem, segunda ordem e características wavelets) foram extraídas dos gânglios linfáticos cervicais segmen- tados em imagens de ressonância magnética. As informações clínicas incluíam sexo, idade e a presença do vírus do papiloma humano. Três fluxos de trabalho baseados na radiómica e métodos de aprendizagem automá- tica foram desenvolvidos. Na análise de características radiómicas, foram avaliados três limiares de correlação (0, 75, 0, 80, 0, 85) para remover as características altamente corre- lacionadas e cinco métodos de seleção de características. Os melhores resultados foram alcançados pelo terceiro fluxo de trabalho quando as variáveis clínicas foram incluídas no modelo treinado (Máquina de Vetores de Suporte Linear). A precisão obtida na predição do tumor HL foi de 78, 8%, na da CO foi de 75, 4%, na do Oro foi de 71, 5% e na predição do tumor Naso foi de 95, 2%. A percentagem de pacientes não classificados foi de 0, 5%. Os resultados indicam que a radiómica em conjunto com métodos de aprendizagem automática e informações clínicas têm potencial para prever com precisão o local do tumor primário em pacientes com carcinoma de tumor primário oculto no CCP.Mainardi, LucaFonseca, JoséRUNLiu, Jiaying2023-03-31T18:40:57Z2022-102022-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/151452enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:55Zoai:run.unl.pt:10362/151452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:36.334684Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
title |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
spellingShingle |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics Liu, Jiaying Radiomics Machine learning Head and neck cancer Unknown primary squamous cell carcinoma MRI Feature selection Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
title_full |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
title_fullStr |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
title_full_unstemmed |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
title_sort |
Prediction of Unknown Primary Carcinoma in Head and Neck Cancer using Radiomics |
author |
Liu, Jiaying |
author_facet |
Liu, Jiaying |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mainardi, Luca Fonseca, José RUN |
dc.contributor.author.fl_str_mv |
Liu, Jiaying |
dc.subject.por.fl_str_mv |
Radiomics Machine learning Head and neck cancer Unknown primary squamous cell carcinoma MRI Feature selection Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Radiomics Machine learning Head and neck cancer Unknown primary squamous cell carcinoma MRI Feature selection Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
The unknown primary carcinoma in head and neck cancer (HNC) is a rare disease in which cancer cells spread to lymph nodes in the upper neck, but the place where it began is unknown. The diagnostic protocol to identify the primary tumour location is challenging and invasive. In return, radiomics, a quick, low-cost, non-invasive and repeatable method, has been demonstrated in this dissertation to be a valuable tool for diagnosing the primary tumour location in these patients. The dataset analysed comprises 400 HNC patients with unknown primary carcinoma from the National Cancer Institution of Milano. The primary tumour sites already diag- nosed were Hypopharynx and Larynx (HL; n = 38), Oral Cavity (OC; n = 63), Oropharynx (OPh; n = 162) and Nasopharynx (NPh; n = 137). In total, 265 radiomic features (includ- ing shape and size, first-order, second-order, and wavelet features) were extracted from the cervical lymph nodes segmented in MRI images. The clinical information included sex, age and HPV status. Three workflows based on radiomics and machine learning methods were developed in this project. In radiomic features analysis, three correlation thresholds (0.75, 0.80, 0.85) to remove the highly correlated features and five distinctive feature selection meth- ods were assessed. The best results were achieved by the third workflow when clinical information was included in the feature set selected by Sequential Backward Selection and trained with a Linear Support Vector Machine classifier. The highest accuracies ob- tained in predicting each tumour location were 78.8% for HL, 75.4% for OC, 71.5% for OPh and 95.2% for NPh. The percentage of unclassified patients was 0.5%. The outcomes indicate that radiomics with machine learning techniques and clinical information hold the potential to predict the primary tumour site accurately. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 2022-10-01T00:00:00Z 2023-03-31T18:40:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151452 |
url |
http://hdl.handle.net/10362/151452 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138134633480192 |