Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39324 |
Resumo: | We investigate the regional gradient observability of fractional sub-diffusion equations involving the Caputo derivative. The problem consists of describing a method to find and recover the initial gradient vector in the desired region, which is contained in the spatial domain. After giving necessary notions and definitions, we prove some useful characterizations for exact and approximate regional gradient observability. An example of a fractional system that is not (globally) gradient observable but it is regionally gradient observable is given, showing the importance of regional analysis. Our characterization of the notion of regional gradient observability is given for two types of strategic sensors. The recovery of the initial gradient is carried out using an expansion of the Hilbert uniqueness method. Two illustrative examples are given to show the application of the developed approach. The numerical simulations confirm that the proposed algorithm is effective in terms of the reconstruction error. |
id |
RCAP_2c3bdfc5051743a51e9a869550710ae4 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39324 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivativesDistributed parameter systemsControl theoryFractional calculusRegional analysisGradient observabilityGradient strategic sensorsWe investigate the regional gradient observability of fractional sub-diffusion equations involving the Caputo derivative. The problem consists of describing a method to find and recover the initial gradient vector in the desired region, which is contained in the spatial domain. After giving necessary notions and definitions, we prove some useful characterizations for exact and approximate regional gradient observability. An example of a fractional system that is not (globally) gradient observable but it is regionally gradient observable is given, showing the importance of regional analysis. Our characterization of the notion of regional gradient observability is given for two types of strategic sensors. The recovery of the initial gradient is carried out using an expansion of the Hilbert uniqueness method. Two illustrative examples are given to show the application of the developed approach. The numerical simulations confirm that the proposed algorithm is effective in terms of the reconstruction error.Springer2023-09-06T16:26:18Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39324eng2195-268X10.1007/s40435-022-01106-0Zguaid, KhalidEl Alaoui, Fatima-ZahraeTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:16:42Zoai:ria.ua.pt:10773/39324Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:29.537526Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
title |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
spellingShingle |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives Zguaid, Khalid Distributed parameter systems Control theory Fractional calculus Regional analysis Gradient observability Gradient strategic sensors |
title_short |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
title_full |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
title_fullStr |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
title_full_unstemmed |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
title_sort |
Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives |
author |
Zguaid, Khalid |
author_facet |
Zguaid, Khalid El Alaoui, Fatima-Zahrae Torres, Delfim F. M. |
author_role |
author |
author2 |
El Alaoui, Fatima-Zahrae Torres, Delfim F. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Zguaid, Khalid El Alaoui, Fatima-Zahrae Torres, Delfim F. M. |
dc.subject.por.fl_str_mv |
Distributed parameter systems Control theory Fractional calculus Regional analysis Gradient observability Gradient strategic sensors |
topic |
Distributed parameter systems Control theory Fractional calculus Regional analysis Gradient observability Gradient strategic sensors |
description |
We investigate the regional gradient observability of fractional sub-diffusion equations involving the Caputo derivative. The problem consists of describing a method to find and recover the initial gradient vector in the desired region, which is contained in the spatial domain. After giving necessary notions and definitions, we prove some useful characterizations for exact and approximate regional gradient observability. An example of a fractional system that is not (globally) gradient observable but it is regionally gradient observable is given, showing the importance of regional analysis. Our characterization of the notion of regional gradient observability is given for two types of strategic sensors. The recovery of the initial gradient is carried out using an expansion of the Hilbert uniqueness method. Two illustrative examples are given to show the application of the developed approach. The numerical simulations confirm that the proposed algorithm is effective in terms of the reconstruction error. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-06T16:26:18Z 2023-01-01T00:00:00Z 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39324 |
url |
http://hdl.handle.net/10773/39324 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2195-268X 10.1007/s40435-022-01106-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137745498537984 |