On clustering interval data with different scales of measures : experimental results

Detalhes bibliográficos
Autor(a) principal: Sousa, Áurea
Data de Publicação: 2015
Outros Autores: Bacelar-Nicolau, Helena, Nicolau, Fernando C., Silva, Osvaldo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.3/3411
Resumo: This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.
id RCAP_2df6c285cb26d11d16d11b7e97c6db35
oai_identifier_str oai:repositorio.uac.pt:10400.3/3411
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On clustering interval data with different scales of measures : experimental resultsAscendant Hierarchical Cluster AnalysisInterval DataVL MethodologyThis article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.Symbolic Data Analysis can be defined as the extension of standard data analysis to more complex data tables. We illustrate the application of the Ascendant Hierarchical Cluster Analysis (AHCA) to a symbolic data set (with a known structure) in the field of the automobile industry (car data set), in which objects are described by variables whose values are intervals of the real data set (interval variables). The AHCA of thirty-three car models, described by eight interval variables (with different scales of measure), was based on the standardized weighted generalized affinity coefficient, by the method of Wald and Wolfowitz. We applied three probabilistic aggregation criteria in the scope of the VL methodology (V for Validity, L for Linkage). Moreover, we compare the achieved results with those obtained by other authors, and with a priori partition into four clusters defined by the category (Utilitarian, Berlina, Sporting and Luxury) to which the car belong. We used the global statistics of levels (STAT) to evaluate the obtained partitions.ABC JournalsRepositório da Universidade dos AçoresSousa, ÁureaBacelar-Nicolau, HelenaNicolau, Fernando C.Silva, Osvaldo2015-04-14T14:57:07Z2015-022015-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.3/3411engSousa Á.; Bacelar-Nicolau H.; Nicolau F.C.; Silva O. (2015). On Clustering Interval Data with Different Scales of Measures: Experimental Results. "Asian Journal of Applied Science and Engineering", Vol. 4, Nº 1, pp. 17-25.2305-915X (Print)info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-12-20T14:31:26Zoai:repositorio.uac.pt:10400.3/3411Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:25:59.135773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On clustering interval data with different scales of measures : experimental results
title On clustering interval data with different scales of measures : experimental results
spellingShingle On clustering interval data with different scales of measures : experimental results
Sousa, Áurea
Ascendant Hierarchical Cluster Analysis
Interval Data
VL Methodology
title_short On clustering interval data with different scales of measures : experimental results
title_full On clustering interval data with different scales of measures : experimental results
title_fullStr On clustering interval data with different scales of measures : experimental results
title_full_unstemmed On clustering interval data with different scales of measures : experimental results
title_sort On clustering interval data with different scales of measures : experimental results
author Sousa, Áurea
author_facet Sousa, Áurea
Bacelar-Nicolau, Helena
Nicolau, Fernando C.
Silva, Osvaldo
author_role author
author2 Bacelar-Nicolau, Helena
Nicolau, Fernando C.
Silva, Osvaldo
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade dos Açores
dc.contributor.author.fl_str_mv Sousa, Áurea
Bacelar-Nicolau, Helena
Nicolau, Fernando C.
Silva, Osvaldo
dc.subject.por.fl_str_mv Ascendant Hierarchical Cluster Analysis
Interval Data
VL Methodology
topic Ascendant Hierarchical Cluster Analysis
Interval Data
VL Methodology
description This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-14T14:57:07Z
2015-02
2015-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.3/3411
url http://hdl.handle.net/10400.3/3411
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sousa Á.; Bacelar-Nicolau H.; Nicolau F.C.; Silva O. (2015). On Clustering Interval Data with Different Scales of Measures: Experimental Results. "Asian Journal of Applied Science and Engineering", Vol. 4, Nº 1, pp. 17-25.
2305-915X (Print)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv ABC Journals
publisher.none.fl_str_mv ABC Journals
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130710780411904