On clustering interval data with different scales of measures : experimental results
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.3/3411 |
Resumo: | This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial. |
id |
RCAP_2df6c285cb26d11d16d11b7e97c6db35 |
---|---|
oai_identifier_str |
oai:repositorio.uac.pt:10400.3/3411 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On clustering interval data with different scales of measures : experimental resultsAscendant Hierarchical Cluster AnalysisInterval DataVL MethodologyThis article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial.Symbolic Data Analysis can be defined as the extension of standard data analysis to more complex data tables. We illustrate the application of the Ascendant Hierarchical Cluster Analysis (AHCA) to a symbolic data set (with a known structure) in the field of the automobile industry (car data set), in which objects are described by variables whose values are intervals of the real data set (interval variables). The AHCA of thirty-three car models, described by eight interval variables (with different scales of measure), was based on the standardized weighted generalized affinity coefficient, by the method of Wald and Wolfowitz. We applied three probabilistic aggregation criteria in the scope of the VL methodology (V for Validity, L for Linkage). Moreover, we compare the achieved results with those obtained by other authors, and with a priori partition into four clusters defined by the category (Utilitarian, Berlina, Sporting and Luxury) to which the car belong. We used the global statistics of levels (STAT) to evaluate the obtained partitions.ABC JournalsRepositório da Universidade dos AçoresSousa, ÁureaBacelar-Nicolau, HelenaNicolau, Fernando C.Silva, Osvaldo2015-04-14T14:57:07Z2015-022015-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.3/3411engSousa Á.; Bacelar-Nicolau H.; Nicolau F.C.; Silva O. (2015). On Clustering Interval Data with Different Scales of Measures: Experimental Results. "Asian Journal of Applied Science and Engineering", Vol. 4, Nº 1, pp. 17-25.2305-915X (Print)info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-12-20T14:31:26Zoai:repositorio.uac.pt:10400.3/3411Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:25:59.135773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On clustering interval data with different scales of measures : experimental results |
title |
On clustering interval data with different scales of measures : experimental results |
spellingShingle |
On clustering interval data with different scales of measures : experimental results Sousa, Áurea Ascendant Hierarchical Cluster Analysis Interval Data VL Methodology |
title_short |
On clustering interval data with different scales of measures : experimental results |
title_full |
On clustering interval data with different scales of measures : experimental results |
title_fullStr |
On clustering interval data with different scales of measures : experimental results |
title_full_unstemmed |
On clustering interval data with different scales of measures : experimental results |
title_sort |
On clustering interval data with different scales of measures : experimental results |
author |
Sousa, Áurea |
author_facet |
Sousa, Áurea Bacelar-Nicolau, Helena Nicolau, Fernando C. Silva, Osvaldo |
author_role |
author |
author2 |
Bacelar-Nicolau, Helena Nicolau, Fernando C. Silva, Osvaldo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade dos Açores |
dc.contributor.author.fl_str_mv |
Sousa, Áurea Bacelar-Nicolau, Helena Nicolau, Fernando C. Silva, Osvaldo |
dc.subject.por.fl_str_mv |
Ascendant Hierarchical Cluster Analysis Interval Data VL Methodology |
topic |
Ascendant Hierarchical Cluster Analysis Interval Data VL Methodology |
description |
This article is is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and although the new works must also acknowledge & be non-commercial. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-14T14:57:07Z 2015-02 2015-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.3/3411 |
url |
http://hdl.handle.net/10400.3/3411 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sousa Á.; Bacelar-Nicolau H.; Nicolau F.C.; Silva O. (2015). On Clustering Interval Data with Different Scales of Measures: Experimental Results. "Asian Journal of Applied Science and Engineering", Vol. 4, Nº 1, pp. 17-25. 2305-915X (Print) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
ABC Journals |
publisher.none.fl_str_mv |
ABC Journals |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130710780411904 |