Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/11441 |
Resumo: | The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed. |
id |
RCAP_2e2c1e5999020943b288150579f8ae08 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/11441 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcataSpecies distribution modelsRange shiftsFucus-vesiculosusPseudo-absencesIntertidal zoneThermal-stressMarine systemsRear edgeSea-iceResponsesThe global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed.Portuguese FCT (Fundacao para a Ciencia e a Tecnologia) [PTDC/AAC-CLI/109108/2008, EXPL/BIA-BIC/1471/2012, EXCL/AAG-GLO/0661/2012]; [SFRH/BPD/88935/2012]Public Library of ScienceSapientiaNeiva, J.Assis, J.Coelho, NelsonFernandes, FranciscoPearson, GarethSerrao, Ester A.2018-12-07T14:53:17Z2015-072015-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11441eng1932-620310.1371/journal.pone.0131530info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:15Zoai:sapientia.ualg.pt:10400.1/11441Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:02:56.995569Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
title |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
spellingShingle |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata Neiva, J. Species distribution models Range shifts Fucus-vesiculosus Pseudo-absences Intertidal zone Thermal-stress Marine systems Rear edge Sea-ice Responses |
title_short |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
title_full |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
title_fullStr |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
title_full_unstemmed |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
title_sort |
Genes left behind: Climate change threatens cryptic genetic diversity in the canopy-forming seaweed bifurcaria bifurcata |
author |
Neiva, J. |
author_facet |
Neiva, J. Assis, J. Coelho, Nelson Fernandes, Francisco Pearson, Gareth Serrao, Ester A. |
author_role |
author |
author2 |
Assis, J. Coelho, Nelson Fernandes, Francisco Pearson, Gareth Serrao, Ester A. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Neiva, J. Assis, J. Coelho, Nelson Fernandes, Francisco Pearson, Gareth Serrao, Ester A. |
dc.subject.por.fl_str_mv |
Species distribution models Range shifts Fucus-vesiculosus Pseudo-absences Intertidal zone Thermal-stress Marine systems Rear edge Sea-ice Responses |
topic |
Species distribution models Range shifts Fucus-vesiculosus Pseudo-absences Intertidal zone Thermal-stress Marine systems Rear edge Sea-ice Responses |
description |
The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 2015-07-01T00:00:00Z 2018-12-07T14:53:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/11441 |
url |
http://hdl.handle.net/10400.1/11441 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1932-6203 10.1371/journal.pone.0131530 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133263500935168 |