Monads on projective varieties

Detalhes bibliográficos
Autor(a) principal: Marchesi, S.
Data de Publicação: 2018
Outros Autores: Marques, P. M., Soares, H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/16230
Resumo: We generalize Floystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a basepoint-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b and c for a monad of type 0 -> (L-v)(a)-> O-X(b) -> L-c -> 0 to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterize low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.
id RCAP_2eed45a5deff8ab72152c95ecfe4eee3
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/16230
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Monads on projective varietiesMonadsACM varietiesWe generalize Floystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a basepoint-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b and c for a monad of type 0 -> (L-v)(a)-> O-X(b) -> L-c -> 0 to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterize low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.Pacific Journal of Mathematics2018-06-27T10:58:58Z2018-01-01T00:00:00Z20182018-06-27T11:55:39Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/16230eng0030-873010.2140/pjm.2018.296.155Marchesi, S.Marques, P. M.Soares, H.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:31:32Zoai:repositorio.iscte-iul.pt:10071/16230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:14:11.575175Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Monads on projective varieties
title Monads on projective varieties
spellingShingle Monads on projective varieties
Marchesi, S.
Monads
ACM varieties
title_short Monads on projective varieties
title_full Monads on projective varieties
title_fullStr Monads on projective varieties
title_full_unstemmed Monads on projective varieties
title_sort Monads on projective varieties
author Marchesi, S.
author_facet Marchesi, S.
Marques, P. M.
Soares, H.
author_role author
author2 Marques, P. M.
Soares, H.
author2_role author
author
dc.contributor.author.fl_str_mv Marchesi, S.
Marques, P. M.
Soares, H.
dc.subject.por.fl_str_mv Monads
ACM varieties
topic Monads
ACM varieties
description We generalize Floystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a basepoint-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b and c for a monad of type 0 -> (L-v)(a)-> O-X(b) -> L-c -> 0 to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterize low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-27T10:58:58Z
2018-01-01T00:00:00Z
2018
2018-06-27T11:55:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/16230
url http://hdl.handle.net/10071/16230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0030-8730
10.2140/pjm.2018.296.155
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pacific Journal of Mathematics
publisher.none.fl_str_mv Pacific Journal of Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134698416373760