Monads on projective varieties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/16230 |
Resumo: | We generalize Floystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a basepoint-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b and c for a monad of type 0 -> (L-v)(a)-> O-X(b) -> L-c -> 0 to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterize low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible. |
id |
RCAP_2eed45a5deff8ab72152c95ecfe4eee3 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/16230 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Monads on projective varietiesMonadsACM varietiesWe generalize Floystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a basepoint-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b and c for a monad of type 0 -> (L-v)(a)-> O-X(b) -> L-c -> 0 to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterize low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.Pacific Journal of Mathematics2018-06-27T10:58:58Z2018-01-01T00:00:00Z20182018-06-27T11:55:39Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/16230eng0030-873010.2140/pjm.2018.296.155Marchesi, S.Marques, P. M.Soares, H.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:31:32Zoai:repositorio.iscte-iul.pt:10071/16230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:14:11.575175Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Monads on projective varieties |
title |
Monads on projective varieties |
spellingShingle |
Monads on projective varieties Marchesi, S. Monads ACM varieties |
title_short |
Monads on projective varieties |
title_full |
Monads on projective varieties |
title_fullStr |
Monads on projective varieties |
title_full_unstemmed |
Monads on projective varieties |
title_sort |
Monads on projective varieties |
author |
Marchesi, S. |
author_facet |
Marchesi, S. Marques, P. M. Soares, H. |
author_role |
author |
author2 |
Marques, P. M. Soares, H. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Marchesi, S. Marques, P. M. Soares, H. |
dc.subject.por.fl_str_mv |
Monads ACM varieties |
topic |
Monads ACM varieties |
description |
We generalize Floystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a basepoint-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b and c for a monad of type 0 -> (L-v)(a)-> O-X(b) -> L-c -> 0 to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterize low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-27T10:58:58Z 2018-01-01T00:00:00Z 2018 2018-06-27T11:55:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/16230 |
url |
http://hdl.handle.net/10071/16230 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0030-8730 10.2140/pjm.2018.296.155 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pacific Journal of Mathematics |
publisher.none.fl_str_mv |
Pacific Journal of Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134698416373760 |