Cohomological characterisation of monads

Detalhes bibliográficos
Autor(a) principal: Marques, P. M.
Data de Publicação: 2014
Outros Autores: Soares, H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/8113
Resumo: Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family.
id RCAP_b2bb02d08eec38ef58b81c6bfd7586a3
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/8113
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Cohomological characterisation of monadsMonadsCohomological characterisationPrimary: 14F05Secondary: 14J1014J60Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family.Wiley-VCH Verlag2014-12-12T14:56:20Z2014-01-01T00:00:00Z20142019-05-20T16:49:53Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/8113eng0025-584X10.1002/mana.201300208Marques, P. M.Soares, H.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:46:52Zoai:repositorio.iscte-iul.pt:10071/8113Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:38.906967Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Cohomological characterisation of monads
title Cohomological characterisation of monads
spellingShingle Cohomological characterisation of monads
Marques, P. M.
Monads
Cohomological characterisation
Primary: 14F05
Secondary: 14J10
14J60
title_short Cohomological characterisation of monads
title_full Cohomological characterisation of monads
title_fullStr Cohomological characterisation of monads
title_full_unstemmed Cohomological characterisation of monads
title_sort Cohomological characterisation of monads
author Marques, P. M.
author_facet Marques, P. M.
Soares, H.
author_role author
author2 Soares, H.
author2_role author
dc.contributor.author.fl_str_mv Marques, P. M.
Soares, H.
dc.subject.por.fl_str_mv Monads
Cohomological characterisation
Primary: 14F05
Secondary: 14J10
14J60
topic Monads
Cohomological characterisation
Primary: 14F05
Secondary: 14J10
14J60
description Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-12T14:56:20Z
2014-01-01T00:00:00Z
2014
2019-05-20T16:49:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/8113
url http://hdl.handle.net/10071/8113
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0025-584X
10.1002/mana.201300208
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134788429283328