Cohomological characterisation of monads
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/8113 |
Resumo: | Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family. |
id |
RCAP_b2bb02d08eec38ef58b81c6bfd7586a3 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/8113 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cohomological characterisation of monadsMonadsCohomological characterisationPrimary: 14F05Secondary: 14J1014J60Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family.Wiley-VCH Verlag2014-12-12T14:56:20Z2014-01-01T00:00:00Z20142019-05-20T16:49:53Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/8113eng0025-584X10.1002/mana.201300208Marques, P. M.Soares, H.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:46:52Zoai:repositorio.iscte-iul.pt:10071/8113Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:38.906967Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cohomological characterisation of monads |
title |
Cohomological characterisation of monads |
spellingShingle |
Cohomological characterisation of monads Marques, P. M. Monads Cohomological characterisation Primary: 14F05 Secondary: 14J10 14J60 |
title_short |
Cohomological characterisation of monads |
title_full |
Cohomological characterisation of monads |
title_fullStr |
Cohomological characterisation of monads |
title_full_unstemmed |
Cohomological characterisation of monads |
title_sort |
Cohomological characterisation of monads |
author |
Marques, P. M. |
author_facet |
Marques, P. M. Soares, H. |
author_role |
author |
author2 |
Soares, H. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Marques, P. M. Soares, H. |
dc.subject.por.fl_str_mv |
Monads Cohomological characterisation Primary: 14F05 Secondary: 14J10 14J60 |
topic |
Monads Cohomological characterisation Primary: 14F05 Secondary: 14J10 14J60 |
description |
Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-12T14:56:20Z 2014-01-01T00:00:00Z 2014 2019-05-20T16:49:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/8113 |
url |
http://hdl.handle.net/10071/8113 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0025-584X 10.1002/mana.201300208 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley-VCH Verlag |
publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134788429283328 |