Monads on projective varieties

Detalhes bibliográficos
Autor(a) principal: Marchesi, Simone
Data de Publicação: 2018
Outros Autores: Macias Marques, Pedro, Soares, Helena
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/23302
https://doi.org/http://dx.doi.org/10.2140/pjm.2018.296.155
Resumo: We generalise Fløystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a base-point-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM), or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b, and c for a monad of a given type to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterise low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over the projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.
id RCAP_b4de405a66d223ef6f6868a7ff5c80e3
oai_identifier_str oai:dspace.uevora.pt:10174/23302
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Monads on projective varietiesmonadsACM varietiesWe generalise Fløystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a base-point-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM), or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b, and c for a monad of a given type to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterise low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over the projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação para a Ciência e Tecnologia (FCT)Pacific Journal of Mathematics2018-07-13T10:30:04Z2018-07-132018-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/23302http://hdl.handle.net/10174/23302https://doi.org/http://dx.doi.org/10.2140/pjm.2018.296.155engSimone Marchesi, Pedro Macias Marques and Helena Soares, Monads on projective varieties, Pacific Journal of Mathematics 296 (2018), no. 1, 155-180.marchesi@ime.unicamp.brpmm@uevora.pthelena.soares@iscte.pt337Marchesi, SimoneMacias Marques, PedroSoares, Helenainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:15:23Zoai:dspace.uevora.pt:10174/23302Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:14:12.736400Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Monads on projective varieties
title Monads on projective varieties
spellingShingle Monads on projective varieties
Marchesi, Simone
monads
ACM varieties
title_short Monads on projective varieties
title_full Monads on projective varieties
title_fullStr Monads on projective varieties
title_full_unstemmed Monads on projective varieties
title_sort Monads on projective varieties
author Marchesi, Simone
author_facet Marchesi, Simone
Macias Marques, Pedro
Soares, Helena
author_role author
author2 Macias Marques, Pedro
Soares, Helena
author2_role author
author
dc.contributor.author.fl_str_mv Marchesi, Simone
Macias Marques, Pedro
Soares, Helena
dc.subject.por.fl_str_mv monads
ACM varieties
topic monads
ACM varieties
description We generalise Fløystad's theorem on the existence of monads on projective space to a larger set of projective varieties. We consider a variety X, a line bundle L on X, and a base-point-free linear system of sections of L giving a morphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM), or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers a, b, and c for a monad of a given type to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterise low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over the projective space and make a description on how the same method could be used on an ACM smooth projective variety X. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional X and show that in one case this moduli space is irreducible.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-13T10:30:04Z
2018-07-13
2018-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/23302
http://hdl.handle.net/10174/23302
https://doi.org/http://dx.doi.org/10.2140/pjm.2018.296.155
url http://hdl.handle.net/10174/23302
https://doi.org/http://dx.doi.org/10.2140/pjm.2018.296.155
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Simone Marchesi, Pedro Macias Marques and Helena Soares, Monads on projective varieties, Pacific Journal of Mathematics 296 (2018), no. 1, 155-180.
marchesi@ime.unicamp.br
pmm@uevora.pt
helena.soares@iscte.pt
337
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Pacific Journal of Mathematics
publisher.none.fl_str_mv Pacific Journal of Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136623589326848