A survey on learning from data streams: current and future trends

Detalhes bibliográficos
Autor(a) principal: João Gama
Data de Publicação: 2012
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/2607
Resumo: Abstract Nowadays, there are applications in which the data are modeled best not as persistent tables, but rather as transient data streams. In this article, we discuss the limitations of current machine learning and data mining algorithms. We discuss the fundamental issues in learning in dynamic environments like continuously maintain learning models that evolve over time, learning and forgetting, concept drift and change detection. Data streams produce a huge amount of data that introduce new constraints in the design of learning algorithms: limited computational resources in terms ofmemory, cpu power, and communication bandwidth. We present some illustrative algorithms, designed to taking these constrains into account, for decision-tree learning, hierarchical clustering and frequent pattern mining. We identify the main issues and current challenges that emerge in learning from data streams that open research lines for further developments.
id RCAP_317ab4558111e42d41c25518929b9f3d
oai_identifier_str oai:repositorio.inesctec.pt:123456789/2607
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A survey on learning from data streams: current and future trendsAbstract Nowadays, there are applications in which the data are modeled best not as persistent tables, but rather as transient data streams. In this article, we discuss the limitations of current machine learning and data mining algorithms. We discuss the fundamental issues in learning in dynamic environments like continuously maintain learning models that evolve over time, learning and forgetting, concept drift and change detection. Data streams produce a huge amount of data that introduce new constraints in the design of learning algorithms: limited computational resources in terms ofmemory, cpu power, and communication bandwidth. We present some illustrative algorithms, designed to taking these constrains into account, for decision-tree learning, hierarchical clustering and frequent pattern mining. We identify the main issues and current challenges that emerge in learning from data streams that open research lines for further developments.2017-11-16T13:53:33Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2607engJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:14Zoai:repositorio.inesctec.pt:123456789/2607Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:51.855920Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A survey on learning from data streams: current and future trends
title A survey on learning from data streams: current and future trends
spellingShingle A survey on learning from data streams: current and future trends
João Gama
title_short A survey on learning from data streams: current and future trends
title_full A survey on learning from data streams: current and future trends
title_fullStr A survey on learning from data streams: current and future trends
title_full_unstemmed A survey on learning from data streams: current and future trends
title_sort A survey on learning from data streams: current and future trends
author João Gama
author_facet João Gama
author_role author
dc.contributor.author.fl_str_mv João Gama
description Abstract Nowadays, there are applications in which the data are modeled best not as persistent tables, but rather as transient data streams. In this article, we discuss the limitations of current machine learning and data mining algorithms. We discuss the fundamental issues in learning in dynamic environments like continuously maintain learning models that evolve over time, learning and forgetting, concept drift and change detection. Data streams produce a huge amount of data that introduce new constraints in the design of learning algorithms: limited computational resources in terms ofmemory, cpu power, and communication bandwidth. We present some illustrative algorithms, designed to taking these constrains into account, for decision-tree learning, hierarchical clustering and frequent pattern mining. We identify the main issues and current challenges that emerge in learning from data streams that open research lines for further developments.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2017-11-16T13:53:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/2607
url http://repositorio.inesctec.pt/handle/123456789/2607
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131604128366592