Dualidades na lógica modal

Detalhes bibliográficos
Autor(a) principal: Nora, Pedro Miguel Teixeira Olhero Pessoa
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/11174
Resumo: O objectivo deste trabalho é desenvolver algumas ferramentas categoriais para provar teoremas de dualidades para categorias de álgebras relevantes na lógica (modal). O primeiro capítulo engloba os conceitos mais elementares de teoria das categorias. No segundo, analisamos adjunções, mónadas e algumas construções associadas, no sentido de determinar uma relação entre as meta-categorias das mónadas definidas numa categoria e das adjunções de Kleisli sobre a mesma categoria. Álem disso, mostramos que a construção de Vietoris é uma componente de uma mónada de Kock-Zöberlein. No terceiro capítulo provamos teoremas de dualidades para álgebras Booleanas com operador e reticulados distributivos com operador, como consequência de dualidades mais gerais de categorias de espaços e relações. Para finalizar, mostramos que a operação nas categorias de álgebras e “hemimorfismos” que corresponde ao produto cartesiano nas categorias de espaços e relações é o produto tensorial.
id RCAP_36c60508d3446b130de8c5d1b57bf769
oai_identifier_str oai:ria.ua.pt:10773/11174
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dualidades na lógica modalMatemáticaCategorias (Matemática)Dualidade (Matemática)Lógica modalO objectivo deste trabalho é desenvolver algumas ferramentas categoriais para provar teoremas de dualidades para categorias de álgebras relevantes na lógica (modal). O primeiro capítulo engloba os conceitos mais elementares de teoria das categorias. No segundo, analisamos adjunções, mónadas e algumas construções associadas, no sentido de determinar uma relação entre as meta-categorias das mónadas definidas numa categoria e das adjunções de Kleisli sobre a mesma categoria. Álem disso, mostramos que a construção de Vietoris é uma componente de uma mónada de Kock-Zöberlein. No terceiro capítulo provamos teoremas de dualidades para álgebras Booleanas com operador e reticulados distributivos com operador, como consequência de dualidades mais gerais de categorias de espaços e relações. Para finalizar, mostramos que a operação nas categorias de álgebras e “hemimorfismos” que corresponde ao produto cartesiano nas categorias de espaços e relações é o produto tensorial.The aim of this work is to develop some categorial tools for proving dualities for categories of algebras relevant in (modal) logic. The first chapter covers the most basic concepts of category theory. In the second, we analyze adjunctions, monads and some associated constructions, in order to determine a relationship between the meta-categories of monads defined on a category and of the Kleisli adjunctions on the same category. Moreover, we prove that the Vietoris construction is part of a Kock-Zöberlein monad. In the third chapter we prove duality theorems for Boolean algebras with operator and distributive lattices with operator as a consequence of more general dualities of categories of spaces and relations. Finally, we show that the operation in the categories of algebras and “ hemimorfismos” that corresponds to the cartesian product on the categories of spaces and relations is the tensor product.Universidade de Aveiro2013-10-15T16:32:16Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/11174porNora, Pedro Miguel Teixeira Olhero Pessoainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:20:11Zoai:ria.ua.pt:10773/11174Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:47:44.016543Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dualidades na lógica modal
title Dualidades na lógica modal
spellingShingle Dualidades na lógica modal
Nora, Pedro Miguel Teixeira Olhero Pessoa
Matemática
Categorias (Matemática)
Dualidade (Matemática)
Lógica modal
title_short Dualidades na lógica modal
title_full Dualidades na lógica modal
title_fullStr Dualidades na lógica modal
title_full_unstemmed Dualidades na lógica modal
title_sort Dualidades na lógica modal
author Nora, Pedro Miguel Teixeira Olhero Pessoa
author_facet Nora, Pedro Miguel Teixeira Olhero Pessoa
author_role author
dc.contributor.author.fl_str_mv Nora, Pedro Miguel Teixeira Olhero Pessoa
dc.subject.por.fl_str_mv Matemática
Categorias (Matemática)
Dualidade (Matemática)
Lógica modal
topic Matemática
Categorias (Matemática)
Dualidade (Matemática)
Lógica modal
description O objectivo deste trabalho é desenvolver algumas ferramentas categoriais para provar teoremas de dualidades para categorias de álgebras relevantes na lógica (modal). O primeiro capítulo engloba os conceitos mais elementares de teoria das categorias. No segundo, analisamos adjunções, mónadas e algumas construções associadas, no sentido de determinar uma relação entre as meta-categorias das mónadas definidas numa categoria e das adjunções de Kleisli sobre a mesma categoria. Álem disso, mostramos que a construção de Vietoris é uma componente de uma mónada de Kock-Zöberlein. No terceiro capítulo provamos teoremas de dualidades para álgebras Booleanas com operador e reticulados distributivos com operador, como consequência de dualidades mais gerais de categorias de espaços e relações. Para finalizar, mostramos que a operação nas categorias de álgebras e “hemimorfismos” que corresponde ao produto cartesiano nas categorias de espaços e relações é o produto tensorial.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2013-10-15T16:32:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/11174
url http://hdl.handle.net/10773/11174
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137528364662784