Volatility and spillover effects in stock markets: A multivariate GARCH approach

Detalhes bibliográficos
Autor(a) principal: Marques, Bernardo Rodrigues
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/27025
Resumo: The goal of this dissertation is to study the behavior of financial market’s volatility. Performing univariate and multivariate analyses, we were able to find the models that can more accurately predict future market indices’ volatilities, considering the spillover effects between them. The data used in this study are the daily prices of S&P 500, DAX and Nikkei 225 indices, that replicate the North American, German and Japanese markets, respectively. The practical part can be divided into two phases. The first part is a univariate analysis of the indices, in which we make the initial diagnosis of the data, specify the conditional mean equation, test the existence of conditional heteroscedasticity in the process and estimate the univariate GARCH models. In a second part, more dedicated to the joint analysis of the indices, we start by applying the pairwise Granger causality test, estimate and diagnose the VAR models, estimate the multivariate GARCH models and take conclusions. Throughout the process, we use information criteria to make decisions. The results indicate that the volatility of the indices tends to be higher in periods of economic crisis and lower in periods of stability. When the goal is to predict the future behavior of the volatility of these market indices separately, we should use the EGARCH(1,1) model. Between the indices under analysis, S&P 500 and DAX are the pair with more presence of spillover effects between them. If we want to forecast market volatilities considering spillover effects, the most suitable model is the symmetric DCC model.
id RCAP_374cc993db5db510e2569e5b5460cd10
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/27025
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Volatility and spillover effects in stock markets: A multivariate GARCH approachMarket indicesVolatilidade -- VolatilitySpillover effectsGARCH modelsMultivariate GARCHÍndices de mercadoEfeitos de contágioModelos GARCHGARCH multivariadoThe goal of this dissertation is to study the behavior of financial market’s volatility. Performing univariate and multivariate analyses, we were able to find the models that can more accurately predict future market indices’ volatilities, considering the spillover effects between them. The data used in this study are the daily prices of S&P 500, DAX and Nikkei 225 indices, that replicate the North American, German and Japanese markets, respectively. The practical part can be divided into two phases. The first part is a univariate analysis of the indices, in which we make the initial diagnosis of the data, specify the conditional mean equation, test the existence of conditional heteroscedasticity in the process and estimate the univariate GARCH models. In a second part, more dedicated to the joint analysis of the indices, we start by applying the pairwise Granger causality test, estimate and diagnose the VAR models, estimate the multivariate GARCH models and take conclusions. Throughout the process, we use information criteria to make decisions. The results indicate that the volatility of the indices tends to be higher in periods of economic crisis and lower in periods of stability. When the goal is to predict the future behavior of the volatility of these market indices separately, we should use the EGARCH(1,1) model. Between the indices under analysis, S&P 500 and DAX are the pair with more presence of spillover effects between them. If we want to forecast market volatilities considering spillover effects, the most suitable model is the symmetric DCC model.O objetivo desta dissertação é estudar o comportamento da volatilidade dos mercados financeiros. Através de análises univariadas e multivariadas, conseguimos encontrar os modelos que preveem de uma forma mais precisa a volatilidade futura dos índices de mercado, tendo em conta os efeitos de contágio existentes entre eles. Os dados utilizados neste estudo são os preços diários dos índices S&P 500, DAX e Nikkei 225, que replicam os mercados norte-americano, alemão e japonês, respetivamente. A parte prática deste estudo divide-se em duas fases. A primeira é uma análise univariada dos índices, na qual é feito o diagnóstico inicial aos dados, especificada a equação média condicional, testada a existência de heteroscedasticidade condicional no processo e estimados os modelos GARCH univariados. Na segunda parte, mais dedicada à análise conjunta dos índices, é aplicado o teste de causalidade emparelhada de Granger, estimados e aplicados os modelos VAR, estimados os modelos GARCH multivariados e tiradas as conclusões. Durante o processo, utilizam-se critérios de informação para tomar decisões. Os resultados indicam que a volatilidade dos índices tende a ser maior em períodos de crise económica e menor em períodos de estabilidade. Quando o objetivo é prever o comportamento da volatilidade destes índices de mercado de forma isolada, devemos estimar um modelo EGARCH(1,1). De entre os índices em análise, o S&P 500 e o DAX são os que apresentam maiores efeitos de contágio entre si. Se quisermos prever a volatilidade destes mercados considerando os efeitos de contágio, o modelo indicado a aplicar é o modelo DCC simétrico.2023-01-05T15:12:07Z2022-12-06T00:00:00Z2022-12-062022-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/27025TID:203135326engMarques, Bernardo Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:56:03Zoai:repositorio.iscte-iul.pt:10071/27025Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:28:41.543773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Volatility and spillover effects in stock markets: A multivariate GARCH approach
title Volatility and spillover effects in stock markets: A multivariate GARCH approach
spellingShingle Volatility and spillover effects in stock markets: A multivariate GARCH approach
Marques, Bernardo Rodrigues
Market indices
Volatilidade -- Volatility
Spillover effects
GARCH models
Multivariate GARCH
Índices de mercado
Efeitos de contágio
Modelos GARCH
GARCH multivariado
title_short Volatility and spillover effects in stock markets: A multivariate GARCH approach
title_full Volatility and spillover effects in stock markets: A multivariate GARCH approach
title_fullStr Volatility and spillover effects in stock markets: A multivariate GARCH approach
title_full_unstemmed Volatility and spillover effects in stock markets: A multivariate GARCH approach
title_sort Volatility and spillover effects in stock markets: A multivariate GARCH approach
author Marques, Bernardo Rodrigues
author_facet Marques, Bernardo Rodrigues
author_role author
dc.contributor.author.fl_str_mv Marques, Bernardo Rodrigues
dc.subject.por.fl_str_mv Market indices
Volatilidade -- Volatility
Spillover effects
GARCH models
Multivariate GARCH
Índices de mercado
Efeitos de contágio
Modelos GARCH
GARCH multivariado
topic Market indices
Volatilidade -- Volatility
Spillover effects
GARCH models
Multivariate GARCH
Índices de mercado
Efeitos de contágio
Modelos GARCH
GARCH multivariado
description The goal of this dissertation is to study the behavior of financial market’s volatility. Performing univariate and multivariate analyses, we were able to find the models that can more accurately predict future market indices’ volatilities, considering the spillover effects between them. The data used in this study are the daily prices of S&P 500, DAX and Nikkei 225 indices, that replicate the North American, German and Japanese markets, respectively. The practical part can be divided into two phases. The first part is a univariate analysis of the indices, in which we make the initial diagnosis of the data, specify the conditional mean equation, test the existence of conditional heteroscedasticity in the process and estimate the univariate GARCH models. In a second part, more dedicated to the joint analysis of the indices, we start by applying the pairwise Granger causality test, estimate and diagnose the VAR models, estimate the multivariate GARCH models and take conclusions. Throughout the process, we use information criteria to make decisions. The results indicate that the volatility of the indices tends to be higher in periods of economic crisis and lower in periods of stability. When the goal is to predict the future behavior of the volatility of these market indices separately, we should use the EGARCH(1,1) model. Between the indices under analysis, S&P 500 and DAX are the pair with more presence of spillover effects between them. If we want to forecast market volatilities considering spillover effects, the most suitable model is the symmetric DCC model.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-06T00:00:00Z
2022-12-06
2022-10
2023-01-05T15:12:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/27025
TID:203135326
url http://hdl.handle.net/10071/27025
identifier_str_mv TID:203135326
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134849579089920