Volatility and spillover effects in stock markets: A multivariate GARCH approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/27025 |
Resumo: | The goal of this dissertation is to study the behavior of financial market’s volatility. Performing univariate and multivariate analyses, we were able to find the models that can more accurately predict future market indices’ volatilities, considering the spillover effects between them. The data used in this study are the daily prices of S&P 500, DAX and Nikkei 225 indices, that replicate the North American, German and Japanese markets, respectively. The practical part can be divided into two phases. The first part is a univariate analysis of the indices, in which we make the initial diagnosis of the data, specify the conditional mean equation, test the existence of conditional heteroscedasticity in the process and estimate the univariate GARCH models. In a second part, more dedicated to the joint analysis of the indices, we start by applying the pairwise Granger causality test, estimate and diagnose the VAR models, estimate the multivariate GARCH models and take conclusions. Throughout the process, we use information criteria to make decisions. The results indicate that the volatility of the indices tends to be higher in periods of economic crisis and lower in periods of stability. When the goal is to predict the future behavior of the volatility of these market indices separately, we should use the EGARCH(1,1) model. Between the indices under analysis, S&P 500 and DAX are the pair with more presence of spillover effects between them. If we want to forecast market volatilities considering spillover effects, the most suitable model is the symmetric DCC model. |
id |
RCAP_374cc993db5db510e2569e5b5460cd10 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/27025 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Volatility and spillover effects in stock markets: A multivariate GARCH approachMarket indicesVolatilidade -- VolatilitySpillover effectsGARCH modelsMultivariate GARCHÍndices de mercadoEfeitos de contágioModelos GARCHGARCH multivariadoThe goal of this dissertation is to study the behavior of financial market’s volatility. Performing univariate and multivariate analyses, we were able to find the models that can more accurately predict future market indices’ volatilities, considering the spillover effects between them. The data used in this study are the daily prices of S&P 500, DAX and Nikkei 225 indices, that replicate the North American, German and Japanese markets, respectively. The practical part can be divided into two phases. The first part is a univariate analysis of the indices, in which we make the initial diagnosis of the data, specify the conditional mean equation, test the existence of conditional heteroscedasticity in the process and estimate the univariate GARCH models. In a second part, more dedicated to the joint analysis of the indices, we start by applying the pairwise Granger causality test, estimate and diagnose the VAR models, estimate the multivariate GARCH models and take conclusions. Throughout the process, we use information criteria to make decisions. The results indicate that the volatility of the indices tends to be higher in periods of economic crisis and lower in periods of stability. When the goal is to predict the future behavior of the volatility of these market indices separately, we should use the EGARCH(1,1) model. Between the indices under analysis, S&P 500 and DAX are the pair with more presence of spillover effects between them. If we want to forecast market volatilities considering spillover effects, the most suitable model is the symmetric DCC model.O objetivo desta dissertação é estudar o comportamento da volatilidade dos mercados financeiros. Através de análises univariadas e multivariadas, conseguimos encontrar os modelos que preveem de uma forma mais precisa a volatilidade futura dos índices de mercado, tendo em conta os efeitos de contágio existentes entre eles. Os dados utilizados neste estudo são os preços diários dos índices S&P 500, DAX e Nikkei 225, que replicam os mercados norte-americano, alemão e japonês, respetivamente. A parte prática deste estudo divide-se em duas fases. A primeira é uma análise univariada dos índices, na qual é feito o diagnóstico inicial aos dados, especificada a equação média condicional, testada a existência de heteroscedasticidade condicional no processo e estimados os modelos GARCH univariados. Na segunda parte, mais dedicada à análise conjunta dos índices, é aplicado o teste de causalidade emparelhada de Granger, estimados e aplicados os modelos VAR, estimados os modelos GARCH multivariados e tiradas as conclusões. Durante o processo, utilizam-se critérios de informação para tomar decisões. Os resultados indicam que a volatilidade dos índices tende a ser maior em períodos de crise económica e menor em períodos de estabilidade. Quando o objetivo é prever o comportamento da volatilidade destes índices de mercado de forma isolada, devemos estimar um modelo EGARCH(1,1). De entre os índices em análise, o S&P 500 e o DAX são os que apresentam maiores efeitos de contágio entre si. Se quisermos prever a volatilidade destes mercados considerando os efeitos de contágio, o modelo indicado a aplicar é o modelo DCC simétrico.2023-01-05T15:12:07Z2022-12-06T00:00:00Z2022-12-062022-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/27025TID:203135326engMarques, Bernardo Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:56:03Zoai:repositorio.iscte-iul.pt:10071/27025Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:28:41.543773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
title |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
spellingShingle |
Volatility and spillover effects in stock markets: A multivariate GARCH approach Marques, Bernardo Rodrigues Market indices Volatilidade -- Volatility Spillover effects GARCH models Multivariate GARCH Índices de mercado Efeitos de contágio Modelos GARCH GARCH multivariado |
title_short |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
title_full |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
title_fullStr |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
title_full_unstemmed |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
title_sort |
Volatility and spillover effects in stock markets: A multivariate GARCH approach |
author |
Marques, Bernardo Rodrigues |
author_facet |
Marques, Bernardo Rodrigues |
author_role |
author |
dc.contributor.author.fl_str_mv |
Marques, Bernardo Rodrigues |
dc.subject.por.fl_str_mv |
Market indices Volatilidade -- Volatility Spillover effects GARCH models Multivariate GARCH Índices de mercado Efeitos de contágio Modelos GARCH GARCH multivariado |
topic |
Market indices Volatilidade -- Volatility Spillover effects GARCH models Multivariate GARCH Índices de mercado Efeitos de contágio Modelos GARCH GARCH multivariado |
description |
The goal of this dissertation is to study the behavior of financial market’s volatility. Performing univariate and multivariate analyses, we were able to find the models that can more accurately predict future market indices’ volatilities, considering the spillover effects between them. The data used in this study are the daily prices of S&P 500, DAX and Nikkei 225 indices, that replicate the North American, German and Japanese markets, respectively. The practical part can be divided into two phases. The first part is a univariate analysis of the indices, in which we make the initial diagnosis of the data, specify the conditional mean equation, test the existence of conditional heteroscedasticity in the process and estimate the univariate GARCH models. In a second part, more dedicated to the joint analysis of the indices, we start by applying the pairwise Granger causality test, estimate and diagnose the VAR models, estimate the multivariate GARCH models and take conclusions. Throughout the process, we use information criteria to make decisions. The results indicate that the volatility of the indices tends to be higher in periods of economic crisis and lower in periods of stability. When the goal is to predict the future behavior of the volatility of these market indices separately, we should use the EGARCH(1,1) model. Between the indices under analysis, S&P 500 and DAX are the pair with more presence of spillover effects between them. If we want to forecast market volatilities considering spillover effects, the most suitable model is the symmetric DCC model. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-06T00:00:00Z 2022-12-06 2022-10 2023-01-05T15:12:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/27025 TID:203135326 |
url |
http://hdl.handle.net/10071/27025 |
identifier_str_mv |
TID:203135326 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134849579089920 |